Beyond Fuel

An On-Orbit Refuelling and Debris Mitigation Joost Hudd Solution

pierre Guillemor

Theo ecca Andrews

Myra Siddiqi

Harmansins

28th May 2024

01 The Growing LEO Ecosystem

04 Project Overview and Next Steps

01 The Growing LEO Ecosystem

Satellite Surge – The Growing Market of Low Earth Orbit

Refueling Satellites? In this Economy?

The Limitation of Satellite Lifetimes

The Lifetime Problem

- 82% of LEO satellites have lifetimes below 4 years.
- Limited fuel reserves are utilised to conduct station keeping.
- Fuel depletion or debris impact lead to decommission.

Replacement, Yes – But At What Cost?

- **\$400k** per satellite per launch.
- **\$500k >** per satellite per unit.
- ~\$1 Million per satellite replacement.

Assuming the satellite to be replace is a 240kg Starlink satellite ridesharing on a on a falcon heavy and estimating manufacturing costs. Values from 240kg Starlink Satellite

A Better Future; On-Orbit Servicing

- NASA, Robotic refuelling missions.
- ESA, 'Clean Space' initiative.
- Astroscale, ELSA-d.

The Beyond Fuel Solution

Project Work Streams

1

Orbit Determination, Maintenance and Rendezvous

Robotic Arm Control and Material Selection

3 Fuel Pumps in Microgravity

Electrodynamic Tethers for Debris Mitigation

Structural Integrity and Material Selection

Determining An LEO Parking Space

• Low Earth Orbit

• 550 km from surface

• 53° inclination

• 0 eccentricity

The Cost Of Longevity

 Across a 20-year period, 104 kg of fuel is required for station keeping.

Visualization of an orbit maintenance Hohmann transfer.

High-Cost Hookups: Rendezvous

 For an exemplary rendezvous mission, 182 kg of fuel is required.

Plan for a **Hohmann Spiral Transfer** for long range rendezvous.

The LEO Environment

Atomic Oxygen

Robot Arm Materials

Outer Protective Material

Nextel + Aramid Fibres

Inner Structural Material

- Specific Strength
- Fatigue Resistance
- Thermal Expansion
- Specific Stiffness
- Specific Price

PEEK IM Carbon Fibre

Robot Arm Control

Fuel Pumps in Microgravity

Challenges

- Microgravity
- Surface tension
- Bubbles forming due to sloshing of fuel in the tank

Solution

Centrifugal pump

Debris Mitigation

- Collision Consequence
- Kessler Syndrome
- Drag Augmentation reduces decay to <10 days

Debris spread from collision

Orbital Decay of CubeSat with EDT

Structural Integrity and Material Selection

Challenges

- Structure of our module
- Extreme Thermal conditions
- Micrometeorite impacts

Experiments

- Whipple Shield Impact Simulation (Ansys)
- Thermal Variation Simulation (COMSOL Multi Physics)

Simulation

Chosen Material: AI 6061 + Spectra1000 + PI + AI 6061

04 Project Overview and Next Steps

Further Improvements

Automated rendezvous and soft capture mechanism

Further experimentation into fuel storage and pumps

> Integration of AI in robotic arm command and control

Use of different drag augmentation devices

> Implementing fatigue, wear and vibrational testing

Thanks

Do you have any questions?

CREDITS: This presentation template was created by **Slidesgo** and includes icons by **Flaticon**, infographics & images by **Freepik** and content by **Eliana Delacour**

