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Abstract

The increasing commercialisation and expansion of the Low Earth Orbit (LEO) ecosystem are hindered by the
limited lifetimes of satellites, primarily due to fuel depletion. The concept of on-orbit servicing, specifically
the ’Beyond Fuel ’ proposal, addresses this challenge by offering refuelling services to extend the operational
lifetimes of satellites. This paper presents the design and simulation of orbit maintenance and rendezvous
manoeuvres for a depot satellite and service vehicle. Orbital parameters for the depot were found through
Low Earth Orbit population analysis. Utilising both Python and FreeFlyer simulation, orbital decay, station
keeping, and rendezvous manoeuvres were modelled. The associated fuel costs for these manoeuvres were
also calculated. Consequently, the depot satellite is anticipated to operate in a low eccentricity, Low Earth
Orbit at an altitude of 550km and inclined at 53 degrees, requiring 104.2382 kilograms of fuel for 20-year
orbit maintenance. The service vehicle requires 182.2057 kilograms for the exemplary rendezvous mission -
encompassing inclination and altitude adjustment as well as phasing.
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1 Introduction

When approaching the ecosystem of Low Earth Orbit (LEO), it becomes clear that rapid expansion and
commercialisation is hindered by the longevity of satellite lifetimes. Historically, lifetimes are limited by a
lack of lifetime extension options when in orbit. In other words, when a satellite is placed into orbit, all the
fuel it will ever have is on board. Through analysis of existing databases [31], it can be determined that 82%
of satellites in orbit today have an expected lifetime of less than four years.

One of the leading reasons for limited satellite lifetimes is fuel depletion. Once initial fuel is exhausted,
orbit maintenance cannot be continued, and the satellite must be decommissioned to not add to the orbital
debris fields in LEO. In cases of satellite collisions, with orbital debris or between satellites, the satellite is
not voluntarily decommissioned and instead becomes disabled, ultimately reentering due to orbital decay. In
both cases, the satellite must be replaced through costly manufacturing and launches. These costs can be
estimated to be around $400,000 per satellite, assuming a cost of $1500 per kg using a fully loaded Falcon
Heavy [28] with an average launch mass Starlink satellite (260kg) [31].

1.1 Beyond Fuel Proposal

A solution to the complications of satellite replacement is proposed by ’Beyond Fuel ’- an on-orbit refuelling
system, positioned in LEO to facilitate lifetime extension services to commercial and governmental satellites.
This would act as a service contracted out by satellite operators, removing the need for individual refuelling
missions or replacements. Instead, fuel could be launched and stored in orbit until it is delivered to any
number of client satellites. Through this, operators can complete lifetime extensions at a reduced cost.

The proposed design would act as a system of two satellites to store and deliver fuel to client satellites. One
satellite would act as the depot, maintaining an orbit above the majority of LEO satellites and the major
drag region. This would allow for the long-term storage of large quantities of fuel. The second satellite would
be a service vehicle, used to transport fuel to clients and remove debris. This would mean separating from
the depot to rendezvous with clients or debris and then returning to the depot.

1.2 Aims and Deliverables

Due to the project’s complexity, deliverables were created associated with each major component of the
proposal. The five components include:

1. A micro-gravity refuelling system focusing on gas-assisted blowdown pumps.

2. A robot arm with associated end effectors.

3. Structural analysis and material choices.

4. A debris de-orbiting system.

5. Design of rendezvous and orbit maintenance manoeuvres for both the depot and service satellite.

This report will focus on the design of the satellite’s orbit and the mission plan for on-orbit satellite refuelling.
As such, simulations will be bench-marked against industry software such as FreeFlyer and recorded data. A
set of deliverables was established to facilitate a logical approach towards these aims.

1. Establishment of orbital parameters for the depot satellite – including altitude, inclination as well as
orbit type and class.

2. Analysis and simulation of orbital decay to facilitate the design of maintenance manoeuvres associated
with the depot satellite.

3. Design and simulation of rendezvous manoeuvres for use by the service vehicle between the depot and
client satellites.

4. Comparison and assessment of varying propulsion systems based upon the chosen manoeuvres.
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Alongside this, the project was planned using a Gantt chart that can be found in the appendix section of
this report 7.1.

2 Depot

The first component of the refuelling system that must be analysed is the depot satellite. As previously
mentioned, there are stringent requirements for the depot and its orbit. Specifically, the orbit must be low
enough to be within serviceable range of client satellites while simultaneously minimising the orbital decay.
To facilitate this, parameters for the operational orbit and the station-keeping manoeuvres to maintain that
orbit must be designed.

2.1 Orbital Parameters

The initial design parameters for the depot satellite concern its operational orbit, specifically the Keplerian
elements. Accurate and careful design of this orbit is instrumental in ensuring the system can operate as
proposed.

Proximity to clientele is a primary concern - minimising the required fuel to deliver refilling services on a
frequent basis. As a result, analysis of potential client satellites can be used to provide a range of potential
parameters for application on the depot. Specifically, the modal orbit class (the altitude range), orbit type
(the specific configuration or trajectory pattern) and orbit parameters (the eccentricity, inclination, perigee
and apogee) must be investigated.

Making use of recent satellite databases, such as the Union of Concerned Scientists’ satellite database [31], or-
bital data can be analysed for the operational population of the earth’s orbit. Relevant tabulated information
gained through analysis is displayed below in tables 2, 3 and 4.

Table 2: Satellite population by
orbit class.

Orbit Class Population
LEO 5937
GEO 580
MEO 142

Elliptical 59

Table 3: LEO satellite popula-
tion by orbit type.

Orbit Type Population
Non-polar inclined 3641
Sun-synchronous 1506

Polar 748
Elliptical 8
Other 34

Table 4: LEO mode orbital pa-
rameters.

Parameter Value
Perigee (km) 548
Apogee (km) 541
Eccentricity 9.39E-4

Inclination (degrees) 53

When appropriately displayed, it is clear that the most common orbit class is a low earth orbit. This is to
be expected since the vast majority of satellites in orbit are used for communications and as such require
minimal latency. Assuming LEO to be the most common orbit type, further data analysis reveals that the
most common orbit type is a non-polar inclined orbit. In terms of the modal orbital parameters, the average
altitude is deemed 545km with approximately zero eccentricity (perfectly circular orbit) and a 53-degree
inclination.

Based on this data, the orbital parameters of the depot can be established. Since the service vehicle is
required to rendezvous with these satellites, its initial launch point, the depot satellite, must be in a similar
orbit – minimising the distance over which the payload will have to travel. Because of this, it can be assumed
that our depot satellite will have a circular, LEO with an altitude of 550km and inclined at 53 degrees.

2.2 Simulation Theory: Orbital Decay

A significant obstacle in the development of long-term fuel storage is the orbital decay of the depot over
time. After a satellite is placed into its permanent orbit, without active maintenance, it will begin to decay -
ultimately reentering the Earth’s atmosphere. This occurs due to the various forces which act on a satellite
while it orbits the planet - namely drag and gravity.
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The drag experienced by satellites in LEO can be separated into two main origins - atmospheric drag and
solar radiation pressure. Atmospheric drag, commonly referred to as aerodynamic drag, is experienced by
any moving object within an atmosphere; the satellites in LEO are positioned in the upper portions of Earth’s
atmosphere such as the thermo or exo-sphere. As a result of this, while being minimal compared to very low
altitudes, aerodynamic drag is the major drag component acting on the satellite. Solar radiation pressure
(SRP) is a component of LEO drag which varies with solar activity.

2.2.1 Atmospheric Drag

As a satellite orbits around the Earth, it collides with any air molecules in its path - each molecule exerting a
force opposing the motion of the satellite. In LEO the density of the atmosphere is high enough to impart a
significant resistance to motion in this manner. At times of high solar activity, the density of the atmosphere
at a specific point increases. This occurs since additional energy is absorbed into the atmosphere and as such
low-density layers rise and are replaced by more dense layers - the result of gas thermal expansion. In this
case, an LEO satellite would have to travel through a denser atmosphere at the same altitude - increasing the
aerodynamic resistance exerted on it [23]. The estimation of atmospheric drag relies on both the structural
features of the satellite and the atmospheric density surrounding the satellite in question. The density
of the atmosphere at a specific altitude above the earth must be determined based on solar activity and
standard atmospheric density models. The structural characteristics, namely the effective surface area, can
be described through a wing-box macro model - separating the satellite into the main body and the satellite
array [19]. Using these two parameters, the atmospheric drag acting on the satellite can be determined at a
point in time and then propagated across a chosen timescale.

The equation used to determine the atmospheric drag force on the satellite is shown below:

Fd =
1

2
ρv2ACd (1)

2.2.2 Solar Radiation Pressure

Solar Radiation Pressure (SRP) describes the absorption and reflection of solar radiation at the satellite’s
surface [34] - through collisions with photons in the satellite’s orbital path. As a result of these interactions,
kinetic energy is lost from the satellite - decelerating its motion. While SRP represents one of the most
relevant perturbation sources when in deep space [6], in LEO this force is orders of magnitude smaller than
aerodynamic drag. As a result of this, SRP can be ignored for proprietary simulation for the sake of simplicity.

2.2.3 Decay Feedback

Regardless of the origin, any drag force exerted on the satellite will cause it to decelerate over time. As a
result of this, the altitude of the satellite will reduce until such a time that the altitude is so low that it
re-enters the atmosphere - at which point atmospheric drag is so great that the satellite is no longer orbiting.
The process of orbital decay, described in the block diagram below 1, is an exponential one. As the satellite
drops to a lower altitude, the atmospheric density increases exponentially, leading to increased drag and
deceleration until the satellite burns up [25].

Satellite
Altitude
Drops.

Atmospheric
Density
Increases.

Increased
Atmospheric

Drag.

Deceleration
of the

Satellite.

Feedback

Figure 1: Orbital decay feedback loop associated with Low Earth Orbit satellites

To numerically simulate this process an ordinary differential equation was derived for the altitude of the
satellite above the Earth’s surface. Equation 22, derived in appendix section 7.2, can be found below:
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ḣ = −GMCDA

m

√
RE + hρ (21)

2.3 Satellite Lifetime Simulation

Based on the previously derived Ordinary Differential Equation (ODE), a simulation for orbital decay was
created. This simulation modelled the altitude of a chosen satellite over a specified time and number of
time steps. When modelling the orbital decay, certain assumptions were made to simplify the problem. As
discussed in the theory section, a circular orbit was assumed, with drag being taken as just atmospheric.

Since the simulation focused on atmospheric drag, the density of the atmosphere was a key parameter. To
ensure the accuracy of atmospheric density the Mass Spectrometer Incoherent Scatter (MSIS)-90 model was
chosen - with values being generated from the UK Solar System Data Centre [21]. This model, developed
initially in 1987 by A E Hedin [14] and then extended in 1991 [13], makes use of recorded mass spectrometer
data from various satellites and on incoherent scatter radar data from several sites on Earth. This allows for
relative accuracy up to 700km altitude on a specific date.

Using this model, a Python script was created to simulate orbital decay 7.3. The simulation is a function of
the satellite’s initial height, mass, drag coefficient and effective surface area. Making use of ‘solve.ivp’ from
the ‘SciPy ’ library [33], the ordinary differential equation for the satellite’s altitude is numerically evaluated
using the Runge–Kutta–Fehlberg method. This determines the loss of orbital energy over time and thus the
reduced altitude. It is key to note that, due to the rotation of the satellite undergoing orbital decay, the
drag coefficient varies across the decay. The simplification of this as a constant drag coefficient assumes the
satellite has a constant effective area and is thus taken as a source of error in the simulation. Nonetheless, a
block diagram of the code is shown below displaying the logic of the system.

Figure 2: Block diagram of the Python script for orbital decay.

2.3.1 Simulation verification

To verify the accuracy of the Python simulation, it was compared to real satellite data - the orbital decay and
subsequent uncontrolled reentry of Tiangong-1. The satellite was launched from Jiuquan Satellite Launch
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Center on September 30th, 2011. On March 16th, 2016, China reported Tiangong-1 had “ceased functioning”
and as such the satellite had begun to decay. This ultimately led to an uncontrolled reentry on the April 2nd

2018 [8]. An orbital decay plot for the last part of reentry can be seen below in figure 3 for later comparison
to the simulation plot - indicating a decay time of 750 days.

Figure 3: Altitude plot of the Tiangong-1 satellite from satellite data [27].

To ensure the simulation was completed accurately, the correct parameters must be used 5.

Table 5: Tiangong-1 simulation input parameters.

Initial Altitude Satellite Mass Drag Coefficient Effective Surface Area
380 km 7500 kg 2.2 34.84 m2

Aside from the physical parameters, the density model remains to be defined. The bulk of Tiangong-1’s
orbital decay occurred across 2017 - with minor parts being in late 2016 and early 2018. The density model
chosen must reflect the atmospheric conditions over this period - taking into account solar activity at the
time. To ensure this was done accurately, density data for this case study was taken from the midpoint of
the time period (March 24th 2017). This data was retrieved from the MSIS-90 model [21] and is displayed
below in figure 4.
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Figure 4: Density variation with altitude on March 24th 2017 from Mass Spectrometer Incoherent Scatter-90
[21].

Making use of these parameters and density model, the orbital decay of Tiangong-1 can be simulated in
Python as shown in figure 5.

Figure 5: Altitude plot of the Tiangong-1 satellite from Python simulation.

A brief analysis indicates a good level of agreement between the simulation and real orbital decay plots. Both
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graphs display a similar profile with a rapidly growing rate of decay as the satellite enters denser sections of
the atmosphere. The actual time to decay is slightly faster, with an 18.35% difference in the time of reentry
(taking 901 days in the Python prediction). This disparity can explained by three simplifications made for
the simulation:

1. Constant effective area. To assume that effective area is constant, it must also be assumed that the
satellite does not rotate during its decay - changing the surface experiencing aerodynamic drag. This
is not true and can lead to disparity with real datasets.

2. Ignorance of Solar Radiation Pressure. The lack of SRP in the decay simulation reduces the total
drag acting on the satellite. While the effect in LEO is minimal, the difference in drag could lead to
slower decay over long periods.

3. Constant density model. The assumption that the density model is constant across the decay period
is inaccurate due to variance in solar conditions. Although variances may be small, they could lead to
disparities in results over extended periods, affecting decay times in response to fluctuations in solar
activity.

Over a longer period, these differences can become much more pronounced, as illustrated by the projected
decay of a CubeSat orbiting at 600km, as discussed in the paper ’How long does it take for a satellite to
fall to Earth?’ [17]. The paper highlights that commonly used prediction tools in the industry, like NASA’s
Debris Assessment Software [24], which factor in solar radiation pressure and geomagnetic activity, forecast
significantly reduced lifespans - for the CubeSat, from approximately 32 years to 18 years.

In the interest of accuracy, a second decay simulation was run using the FreeFlyer software, once again
making use of a MSIS-90 density model and the Runge–Kutta–Fehlberg method for propagation.

Figure 6: Altitude plot of the Tiangong-1 satellite from FreeFlyer simulation.

This resulted in a decay plot (6) being produced with a time to reentry of 625 days. This means an almost
equal error to the Python script of 17.9% when compared to satellite data. This error is an undershoot while
the Python simulation was an overshoot.

2.3.2 Depot Lifetime Simulation

Making use of the validation tests completed prior, it is clear that a reasonably accurate lifetime estimation
can be made through the comparison of the Python and FreeFlyer simulations. To complete these simulations,
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the relevant physical parameters are listed below in table 6.

Table 6: Depot satellite simulation input parameters.

Initial Altitude Satellite Mass (Including Payload) Drag Coefficient Effective Surface Area
550 km 15000 kg 2.2 36.55 m2

Based on these parameters the orbital decay of the depot satellite can be predicted as shown in figures 7 and
8.

Figure 7: Altitude plot of the depot satellite from Python simulation.

Figure 8: Altitude plot of the depot satellite from FreeFlyer simulation.
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Through initial analysis of these plots, it can be seen that the Python simulation predicts a lifetime of 59341
days while the FreeFlyer simulation predicts a lifetime of 42324 days. As before, it can be assumed the true
lifetime of the depot can be found at the midpoint between the two values - giving a lifetime of 50832.5 days.

2.4 Station-keeping

To mitigate orbital decay, orbit maintenance, or station-keeping manoeuvres are used. These typically take
the form of propellant burns to raise the altitude of the satellite when it falls below a certain altitude threshold
or tolerance. Various methods can be used to achieve this, with the deciding factor between them being fuel
efficiency. Due to the importance of weight and longevity when designing a satellite, the chosen manoeuvre
must complete the required objective with a minimal delta-v cost thus requiring minimal fuel. This ensures
minimal space and weight allocation to the satellite’s fuel storage while providing longevity to its lifetime.

Once more Tiangong-1 offers a cautionary case study, emphasising the significance of station-keeping through-
out the operational lifespan of a satellite. Before control loss, the satellite regularly undertook orbit main-
tenance manoeuvres to maintain a stable orbit between 350 and 400 km. When these manoeuvres became
impossible to continue, the satellite underwent catastrophic decay and reentry as discussed previously. Evi-
dence of these manoeuvres can be seen below in figure 9.

Figure 9: Evolution of the average altitude of Tiangong-1 across its lifetime [27].

2.4.1 Simulation Theory: Types of Transfer

To determine the appropriate orbit maintenance manoeuvre for the depot satellite, two methods and their
associated delta v costs were evaluated. The methods compared were a Hohmann and a Bi-elliptic transfer.

The process of a Hohmann transfer involves a series of steps to transition a satellite from a lower orbit to
a higher one. Initially, Python code was developed to calculate the required delta-v for this transfer. The
transfer comprises three main phases:

1. Initial prograde burn: This stage involves accelerating the satellite, elongating its orbit into an
elliptical shape with the desired altitude as its apoapsis.

2. Coasting phase: Following the initial burn, the spacecraft enters a coasting phase, where it follows
the elliptical orbit until it reaches the apoapsis.

3. Second prograde burn: Once at the apoapsis, the spacecraft executes another prograde burn. This
manoeuvre circularises the orbit at the new, higher altitude.

For the Bi-elliptic transfer, a slightly different approach is used. In this case, three burns are used to increase
the altitude, described as follows:

1. Initial prograde burn: This stage involves accelerating the satellite, elongating its orbit into an
elliptical shape with the desired altitude as its apoapsis.

9



2. Coasting phase: Following the initial burn, the spacecraft enters a coasting phase, where it follows
the elliptical orbit until it reaches the apoapsis

3. Second prograde burn: Once at the apoaspis, a second prograde burn increases the perigee altitude.

4. Retrograde burn: Once at the periapis, the spacecraft executes another retrograde burn. This
manoeuvre circularises the orbit at the final, higher altitude.

The validity of both approaches was confirmed and visualised using FreeFlyer software, applying the same
underlying logic. In both the Python code and FreeFlyer simulations, calculations were based on the vis-viva
equation below:

v =

√
µ

(
2

r
− 1

a

)
(2)

To calculate the delta v associated with the depot satellite undertaking both a bi-elliptic and Hohmann
transfer, the vis-viva equation is utilised. This method allows for the calculation of the delta v required for
each burn in sequential order and ultimately the total delta-v [2][1].

2.4.2 Simulation

In both cases, an operational altitude of 550 km was specified with a tolerance of 20km. The satellite was
modelled as the depot - with parameters detailed in table 6. The velocities of the initial and final orbits are
determined to be 7.585 km/s and 7.59 km/s respectively - using equation 2.

Table 7: Delta v cost per orbit maintenance manoeuvre.

Hohmann Transfer Bi-elliptic Transfer
Total Delta v (km/s) 0.01097 2.357

Figure 10: Hohmann transfer visualised in
FreeFlyer. Figure 11: Bi-elliptic transfer visualised in

FreeFlyer.

The results of both simulations are tabulated for comparison 7. From this, it can be determined that the
Hohmann transfer uses significantly less delta-v than the bi-elliptic transfer for the orbit maintenance of the
depot. This is an expected result due to the radii ratio between the chosen and tolerance orbits. When
the target orbit to tolerance orbit radii-ratio is less than 15·58 but greater than approximately 11·94, the
bi-elliptical transfer is more economical if the intermediate point is placed at a sufficiently high altitude.
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[15]. Since the radii ratio in the case of the depot is only slightly above 1 a significant reduction in delta
v cost is expected to be found using a Hohmann transfer. This also happens to align with the tests that
are conducted in ’Assessment of Orbit Maintenance Strategies for Small Satellites’ [18] in which Hohmann
transfers are found be be very efficient.

2.5 Depot Fuel Estimation

The fuel required for the satellite to complete orbit maintenance manoeuvres is a key value that must be
defined. To determine this, the total required delta v across a set period must be found alongside the
assignment of propulsion systems to the satellite - providing a specific impulse value. Once these values are
found, the fuel mass required for the period can be determined using a rearranged ideal rocket equation. The
ideal rocket equation [5] is given by:

∆v = Isp × g0 × ln

(
m0

mf

)
(3)

Rearranging the ideal rocket equation for m0, we get:

m0 = mf · e
∆v

Isp×g0 (4)

2.5.1 Delta v

To establish the required delta v for the depot satellite a period of 20 years (7305 days) was chosen. This
provides a large enough timescale to be feasible when designing fuel requirements. Using, the previously
made Hohmann transfer simulation in FreeFlyer, a new script was created to simulate the orbit maintenance
of the satellite to combat orbital decay. This used the same parameters as in the previous depot simulations
- found in table 6.

Figure 12: Altitude plot of the depot satellite over 20 years.

From figure 12, it can be seen that 2 Hohmann transfers are required across 20 years to maintain a stable orbit
at 550 km altitude. From this, it can be determined that the required delta v for one year is 0.0109 km/s×2 =
0.0218 km/s.

2.5.2 Propulsion system

The determination of a specific propulsion system within the depot satellite is crucial to determine the fuel
requirements. This is because the type of propulsion system defines the specific impulse (Isp) available. To
establish the appropriate system, a weighted decision matrix was created based on literature sources - as seen
below in figure 8.
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Table 8: Depot satellite propulsion system weighted decision matrix [32] [20].

From this, it is clear that a chemical bi-propellant system is ideal for application on the deport satellite.
Typically, these systems provide a high specific impulse while limiting system and fuel weight. The nominal
thrust associated with bi-propellant systems is lower than that of solid systems but in this case will suffice.
This is because the depot satellite will be under micro-gravity and as such will have a lower gravitational
force opposing any station-keeping manoeuvres. It is worth noting that if a higher thrust was required for
any reason, the propellant choice could be adjusted to increase its mass. This is because a higher fuel weight
is intrusively linked to the thrust produced by a thruster [7].

In terms of a specific propulsion system, the 400N Bi-Propellant Apogee Motor by AirianeGroup was chosen.
The key specifications are detailed below ??.

Table 9: Depot satellite propulsion system specifications [4]

Parameter Value
Nominal Thrust 425 N
Nominal Specific Impulse 321 s
Mass 4.3 kg
Fuel Monomethylhydrazine
Oxidizer N2O4, MON-1, MON-3

2.5.3 Fuel Mass

Finally, the fuel mass required for the deport satellite to conduct orbit maintenance over 20 years can be
determined. The delta-v cost across the 20-year period is found to be 0.0218 km/s while the specific impulse
of the satellite is given as 321 seconds. Making use of equation 2.5 the required total mass of the satellite
including required fuel can be determined:

m0 = 15000 kg · e
0.0218×103 m/s

321 s×9.81 = 15104.2382 kg

From this, it is clear that 104.2382 kilograms of fuel is required to perform orbit maintenance of the deport
satellite over 20 years.

3 Service Vehicle

To facilitate the delivery of fuel and removal of debris, a secondary service vehicle will be used. This smaller
vehicle will contain a fuel pump, onboard fuel storage tanks and a robotic arm - in addition to basic propulsion
and power systems. Using these systems, the depot satellite can remain at a higher altitude to store more
fuel mass while a lighter and more agile vehicle can provide the services at varied altitudes.

This section of the report will detail the steps taken by the service vehicle to conduct rendezvous manoeuvres
with an example satellite - resulting in a calculated fuel cost. This should allow for general fuel sizing for a
potential mission.
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3.1 Phases of a Rendezvous Mission

The rendezvous process consists of a series of orbital manoeuvres which bring the chaser satellite into the
vicinity of the target - eventually allowing for docking between the two vehicles [10]. The standard approach
to rendezvous follows a series of phases as detailed below in figure 13.

Figure 13: Main phases of a typical rendezvous mission [10].

3.1.1 Launch

The launch phase can be ignored for the service satellite. This is because, before use, the vehicle is docked
within the depot satellite, meaning it is already in the same orbit as the depot.

3.1.2 Far-range Rendezvous

The far-range rendezvous phase is the transition from the phasing orbit to an orbit close to that of the target.
If the chaser and target satellites are both positioned in low eccentricity orbits with different altitudes, co-
planar rendezvous manoeuvres can be used to manoeuvres the chaser [12]. This is often done using Hohmann
transfers to ensure delta-v efficiency.

In addition to altitude adjustment, inclination differences must be accounted for between the chaser and
client satellites. Commonly referred to as a ’plane change’ manoeuvre, changing the inclination of the chaser
satellite can be done through a simple impulsive burn - as shown in 18. In this case, the shape of the initial
orbit will not change.
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Figure 14: Generic geometry of a plane change manoeuvre [3].

In the case where both an inclination change and an altitude adjustment are required, a Hohmann Spiral
Transfer (HST) can be used. This manoeuvre combines both components of the far-range rendezvous into
one. To ensure delta-v efficiency, the graph below details the benefit region for using a HST.

Figure 15: Benefit region for a HST manoeuvres based on inclination change and specific impulse [26].

3.1.3 Phasing

The phasing component of a rendezvous mission plays a significant role in closing the gap between the chaser
and target satellites. Phasing manoeuvres are used to change the position of a spacecraft in its orbit and can
be used to move two satellites closer together - providing they are in different positions with respect to time
along an orbital path. These manoeuvres can also be used by satellites in GEO to relocate to new positions
above the Earth [9].

In general, two burn Hohmann transfers are used to conduct the phasing - one burn to enter and leave the
transfer orbit respectively. Should a satellite wish to move to a target behind its current position, it can
move to a transfer orbit with a higher period than its current orbit and then rejoin its initial orbit at the
specified point. If the satellite has a target ahead of it’s position, then a transfer orbit with a lover period
can be used similarly.

14



3.1.4 Close-range Rendezvous and Capture

The final approach of the chaser satellite to the target is conducted using the Reaction Control System
(RCS) mounted on board. Generally, this means the use of a combination of large and small thrusters for
translations and attitude control - in some cases, the attitude is managed purely by reaction wheels or control
moment gyroscopes to reduce fuel use.

For the sake of this report, close-range attitude adjustments can be ignored. This is because once the service
vehicle is within proximity of the target, the robot arm mounted on the vehicle will perform soft capture.

3.2 Delta-v Calculation

To simulate a potential rendezvous manoeuvre to be conducted by the service vehicle, orbital parameters for
the service vehicle and potential target satellite must be defined.

3.2.1 Input Parameters

In this case, making use of the Union of Concerned Scientists’ satellite database, a Starlink satellite is chosen
- with parameters detailed below in table 10.

Table 10: Starlink-5200 satellite specifications.

Parameter Value
Current Official Name of Satellite Starlink-5200
Class of Orbit LEO
Type of Orbit Polar
Longitude of GEO (degrees) 0
Perigee (km) 358
Apogee (km) 362
Eccentricity 2.97× 10−4

Inclination (degrees) 70
Period (minutes) 91.8
Launch Mass (kg) 260
Date of Launch 9/13/2021
Expected Lifetime (years) 4

Starlink-5200 is a communications satellite with a lifetime of around 4 years - making it a prime client for
refuelling. This satellite is positioned in LEO with an almost circular orbit. It is in a polar orbit with an
inclination of 70 degrees.

In terms of the service satellite, the orbital parameters for its orbit will be the same as the depot - as if the
service vehicle is orbiting alongside it. The main specification that must be outlined is the propulsion system.
To ensure the use of a HST, a specific impulse of above 15 seconds must be provided. This is made clear
through figure 15 as the change in inclination required is 17 degrees or 0.297 radians. As a result of this, a
low-thrust thruster was chosen, a Gridded Ion Thruster (NEXT-C) [22].

Table 11: Gridded Ion Thruster (NEXT-C) specifications.

Parameter Value
Thrust range 236 mN
Specific impulse 4190 s

In addition to this, it must be noted that the overall dry mass of the service vehicle will be 1000 kg - including
payload.
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3.2.2 Far-range Rendezvous

The initial steps that must be taken are inclination and altitude adjustment. The change in inclination is 17
degrees or 0.297 radians. The initial orbit is identical to that of the depot and thus the service vehicle has a
velocity of 7.585 km/s at any point along it’s orbit. The target satellite is in an elliptical orbit so it’s speed
varies along its orbital path. At apoapsis (362 km), the target satellite is deemed to have a velocity of 7.689
km/s.

√
3.986× 105

(
2

6740
− 1

6736

)
= 7.689km/s

To calculate the delta-v required for the HST to the apoapsis point, the following equation can be used [9]:

∆v =
√
v21 + v22 − 2v1v2 cos(∆i) (5)

Substituting for given values, a delta-v of 2.26 km/s is found. This is delta-v required to transition the
chaser from its initial altitude and inclination to that of at the apoapsis of the target orbit. The substituted
equation is shown below and the code is shown in section 7.5.

∆v =

√
7.5862 + 7.6892 − 2× 7.5867× 7.689× cos

( π

180
× (70− 53)

)
= 2.26013km/s

Finally, a single impulse burn at the apogee of the chaser orbit must be completed to place it into the same
orbit as the target - essentially completing the first stage of a Hohmann transfer to go from a circular to an
elliptical orbit. This is required as for refuelling, a singular intercept point does not provide a sufficient time
frame. This manoeuvre will require a delta-v of 0.0034 km/s and is shown below in figure 16.

Figure 16: The single impulse transfer between circular and elliptical orbit.

3.2.3 Phasing

For the sake of example, it will be assumed that the chaser satellite is ahead of the target satellite by an
angle of 110 degrees - as shown in figure 17
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Figure 17: Positions of the chaser and target satellite along an elliptical orbit.

The total delta-v required to complete the phasing is found to be 4.61652 km/s - as per section 7.6.

3.2.4 Total delta-v

The total delta-v associated with the potential rendezvous mission is deemed to be 6.88005 km/s. This is
based on the sum of delta-v cost from all phases.

∆vTotal = 2.26013km/s+ 0.0034km/s+ 4.61652km/s = 6.88005km/s

3.3 Fuel Mass

The fuel cost for the rendezvous can be calculated in the same manner as for the depot satellite - making use
of the ideal rocket equation 2.5.

m0 = 1000 kg · e
6.88005×103 m/s

4190 s×9.81 = 1182.2057 kg

Thus, 182.2057 kilograms of fuel is required to perform the rendezvous manoeuvre.

4 Conclusion

Across the depot and service vehicle sections, orbit maintenance and rendezvous manoeuvres have been
designed for the ’Beyond Fuel ’ on-orbit servicing concept. Making use of simulations, the manoeuvres have
been modelled and their fuel costs established.

The depot satellite was determined to maintain an LEO operating altitude of 550km at an inclination of 53
degrees. The depot’s lifetime without station keeping was simulated using Python and FreeFlyer - giving an
estimation of 50832.5 days. To maintain altitude, station-keeping manoeuvres were designed, this involved
the use of Hohmann transfers to raise the depot once it decays 20km away from 550km altitude. Across a
20-year period, 104.2382 kilograms of fuel is required for station-keeping.

An exemplary rendezvous mission with a potential client satellite was designed with the estimated delta-v
and fuel costs calculated. The mission consisted of a HST followed by a single impulse and phasing transfer.
The mission total delta-v was calculated to be 6.88005 km/s and the fuel cost associated with this was found
to be 182.2057 kilograms of fuel. This low fuel cost ensures financial feasibility and is facilitated by the use
of low thrust, high specific impulse gridded ion thrusters.
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Overall, it is clear that efficient mission design and associated low fuel estimates demonstrate the feasibility of
the ’Beyond Fuel ’ project. With further innovation, such as updating mission plans to facilitate the servicing
of multiple satellites in one mission, the on-orbit servicing model could be scaled up without the need for
significant adjustments. This ultimately means a cleaner LEO ecosystem for all and a financially feasible
project for the ’Beyond Fuel ’ team.
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7 Appendix

7.1 Project Planner (Gantt chart)

Figure 18: Project Gantt chart with legend.

7.2 Orbital Decay ODE Derivation

Prior to considering orbital decay, an orbit not subject to atmospheric drag must be considered for derivation.
In the case of a satellite orbiting around the earth, the force of gravity can be treated as the centripetal force
– a fact illustrated by combining the two relevant equations to create equation 8. In this case: F is centripetal
force; Fg is the force of gravity; m is the mass of the satellite; M is the mass of Earth; G is the gravitational
constant; r is the radius of the orbit from the centre and v is the speed of the satellite.

F =
mv2

r
(6)

Fg =
GMm

r2
(7)

GMm

r2
=

mv2

r
(8)

Equation 8 can be rearranged to solve for the speed of the satellite, as shown below by equation 9.

√
GM

r
= v (9)

The conserved mechanical energy of the satellite system, assuming no drag, can be found through equation 8,
shown below. This equation combines the gravitational potential energy (equation 6) with the kinetic energy
(equation 11).

EPotential = −GMm

r
(10)

EKinetic =
1

2
mv2 (11)

E = −GMm

2r
(12)

The time derivative of the mechanical energy can be written as seen below in equation 13.

dE

dt
=

d

dt

(
−GMm

2r

)
(13)
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Making use of the chain rule to differentiate, equation 14 can be established – giving a simplified form of the
time derivative of mechanical energy.

dE

dt
=

dr

dt

(
−GMm

2r2

)
(14)

When applying this to a system in low earth orbit, atmospheric drag must be accounted for. This drag acts
to oppose the velocity of the satellite. The equation for drag force is listed below in equation 15. Within this
equation: ρ is local atmospheric density; CD is the drag coefficient of the satellite; A is the surface area of
the satellite and v is the speed of the satellite.

FDrag =
1

2
ρCDAv2 (15)

Subsequent substitution of equation 13 into equation 15 gives the following equation for the magnitude of
drag force exerted, as shown below in equation 16.

FDrag =
1

2
ρCDA

(
GM

r

)2

(16)

The power exerted as a result of the drag force can be calculated through the use of equation 17, resulting
in equation 18.

P = FDrag · v (17)

PDrag =
1

2
ρCDA

(
GM

r

)3/2

(18)

Based on this, the time derivative of mechanical energy can be set equal to the power exerted by drag. This
is because the majority of energy change within the system will be associated with drag.

dr

dt

(
−GMm

2r2

)
= PDrag (19)

This equation can be rearranged to give equation 20, making note that dr
dt is represented by ṙ.

GMm

2

ṙ

r2
= −1

2
ρCDA

(
GM

r

)3/2

(20)

Simplification of this expression allows for the equation to be set for the derivative of altitude from the centre
of the earth over time.

ṙ = −GMCDA

m

√
rρ (21)

Equation 21 can be rearranged to provide the altitude of the satellite above the earth instead of from the
centre.

ḣ = −GMCDA

m

√
RE + hρ (22)

This final equation is the ordinary differential equation that when integrated for a specific time, gives the
altitude of a chosen satellite above the Earth’s surface.
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7.3 Orbital Decay Python Script

1 import numpy as np

2 import pandas as pd

3 from scipy.integrate import solve_ivp

4 import matplotlib.pyplot as plt

5 import sys

6

7 # Constants

8 G = 6.67430e-11 # gravitational constant (m^3/kg/s^2)

9 M_EARTH = 5.972 e24 # mass of the Earth (kg)

10 R_EARTH = 6371e3 # radius of the Earth (m)

11 Cd = 2.2 # drag coefficient

12 surface_area = 36.55 # satellite surface area (m^2)

13 mass = 15000 # satellite mass (kg)

14 minimum = 150000 # rentry altitude (km)

15

16 # Load air density data from CSV file

17 density_data = pd.read_csv(’alt + density 2022. csv’)

18 heights = density_data[’Altitude ’]. values *1e3 # convert km to m

19 densities = (density_data[’Density ’]. values *1e3)

20

21 # Interpolate air density as a function of altitude

22 density_interp = np.interp

23

24 def density_interpolator(h):

25 return np.interp(h, heights , densities)

26

27 # Effective area and drag constant

28 A_eff = Cd * surface_area

29 k = (((G * M_EARTH) ** 0.5) * A_eff) / mass

30

31 # ODE for altitude

32 tolerance = 1 # You can adjust the tolerance based on your needs

33

34 def model(t, h):

35 if h <= minimum:

36 h_dot = 0.0

37

38 if abs(h - minimum) < tolerance:

39 days_taken = t/86400 # Assuming ’t’ is the time parameter

40 print(f"Altitude dropped below {minimum / 1000} km at t = {days_taken}

days.")

41

42 return None

43

44 else:

45 density = density_interpolator(h)

46 #print(density)

47 h_dot = -k * density * (R_EARTH + h) ** 0.5

48 return h_dot

49

50 # Initial conditions

51 initial_altitude = float(input("Inital Altitude (km): ")) *10**3 # initial

altitude (m)

52 initial_time = 0.0 # initial time (s)

53

54 # Time span for integration

55 max_time = 60000000000
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56 steps = 1000

57 t_span = (initial_time , max_time)

58 t = np.arange(initial_time , max_time ,steps)

59

60 # Solve the ODE

61 solution = solve_ivp(model , t_span , [initial_altitude], method=’RK45’, t_eval = t,

dense_output=True)

62

63 # Extract results

64 time_values = solution.t

65 altitude_values = solution.y[0]

66

67 # Plot the results

68 plt.plot(time_values /86400 , altitude_values /1000)

69 plt.xlabel(’Time (Days)’)

70 plt.ylabel(’Altitude (km)’)

71 plt.title(’Satellite Orbital Decay’)

72 plt.show()

7.4 Hohmann Transfer Python Script

1 import math as m

2 mu = 3.986 E5 # km**3/s**2

3 R_E = 6378 # km

4

5 #Inputs

6 alt_inital= float(input("Altitude tolerance (km): ")) #altitude tolerance (km)

7 final_alt = float(input("Operational altitude (km): ")) #Operational altitude (km)

8

9 #Final orbit

10 r_final = final_alt + R_E # km

11 v_final = m.sqrt(mu / r_final)

12 print(’v_final=’,v_final ,’km/s’)

13

14 #Initial orbit

15 r_inital = alt_inital +R_E

16 v_inital = m.sqrt(mu / r_inital)

17 print(’v_inital=’,v_inital ,’km/s’)

18

19 #Transfer orbit

20 r_per = r_inital

21 r_apo = r_final

22 h_t = m.sqrt(2 * mu * r_apo * r_per / (r_apo + r_per))

23 v_tper = h_t / r_per

24 v_tapo = h_t / r_apo

25 print(’Perigee and apogee velocity are’, v_tper , ’and’, v_tapo , ’km/s

respectively ’)

26

27 #Delta_v

28 Delta_v = abs(v_final - v_tapo) + abs(v_tper - v_inital)

29 print(’Delta v required is’, Delta_v ,’km/s’)

7.5 Hohmann Spiral Transfer Python Script

1 import math

2

3 def delta_v(v1 , v2 , delta_i):
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4 return math.sqrt(v1**2 + v2**2 - 2*v1*v2*math.cos(delta_i))

5

6 # Example usage:

7 v1 = 7.586285640615977 # inital velocity in km/s

8 v2 = 7.689078116344338 # final velocity in km/s

9 angle_i = 53 #inital angle in degrees

10 angle_f = 70 #final angle in degrees

11 delta_i = math.radians(angle_f -angle_i) # value for delta_i in radians

12

13 result = delta_v(v1, v2, delta_i)

14 print("Delta -v in km/s is:", result)

7.6 Phasing Python Script

1 import math

2 #Inputs

3 Current_period = 91.8 * 60 #seconds

4 mu = 3.986 E5 # km**3/s**2

5

6 #Determine how far ahead/behind the target is in time

7 theta = 110

8 time_behind = (110/360) *24*3600

9 print("Time target is behind is:", time_behind ,"seconds")

10

11 #Determine the period needed for the new orbit

12 #target is behind the chaser so the chaser needs to slow down.

13 #This means that we will be expanding our orbit , increasing our SMA , and therefore

increasing our period.

14 New_period = Current_period + time_behind

15 print("New period is:", New_period ,"seconds")

16

17 #Calculate the SMA of the new orbit

18 a_new=(mu*( New_period /(2* math.pi))**2) **(1/3)

19 print("SMA in km is", a)

20

21 #vis -viva - current

22 mu = 3.986 E5

23 R_E = 6378 # km

24 apo = 362 + R_E

25 per = 358 + R_E

26 r = apo

27 e = 2.97*10** -4

28 a = per/(1-e)

29 v = (mu *((2/r) -(1/a)))**0.5

30 print(v, "km/s")

31

32 #vis -viva - phasing

33 mu = 3.986 E5

34 R_E = 6378 # km

35 apo = 362 + R_E

36 r = apo

37 v_phasing = (mu *((2/r) -(1/ a_new)))**0.5

38 print(v_phasing , "km/s")

39

40 #Calc delta v

41 #Delta v to rejoin orbit is the same as leaving to multiply by 2

42 deltav =2*( v_phasing -v)

43 print(deltav , "km/s")
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