N 7 **366**

۲

esa

Group E Melina, Marta, Gurpreet, Jose, Joost, and Ioana Friday, September 13, 2024 ESA Academy

Summary of our task

- **1.** Space debris mitigation requirements
- 2. Mission profile
- 3. Representative model of the satellite
- 4. Impact risk of micrometeoroids and space debris
- 5. Collision avoidance strategy
- 6. Disposal plan
- 7. Results

UT SPACE DEBRIS MITIGATION REQUIREMENTS

3

Space Debris mitigation requirements 1/2

*	Requirement type	Requirement number	Description
-	Disposal	REQ-010	The satellite shall clear its orbit in maximum of 5 years after the end of its functional lifetime
	Disposal	REQ-020	Probability of successful disposal of at least 90%
	Disposal	REQ-070	Propellant residual volume shall be less than 1% of the tank capacity
	Disposal	REQ-080	Casualty risk of better than 10^-4 from uncontrolled entry; can be worse than 10^-4 for controlled re-entry

Space Debris mitigation requirements 2/2

Requirement type

Requirement number

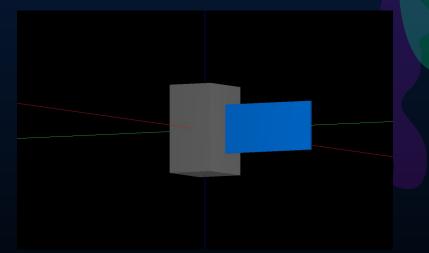
Description

Design	REQ-050	The spacecraft fuel tank pressurant shall be less than 5 bars
Design	REQ-060	The spacecraft propellant tank pressure shall be less than 5.5 – 6 bar
Collision	REQ-030	Cumulative collision probability better than 10^-3 for objects that are greater than 1 cm in size
Operations	REQ-040	The mission operations shall ensure the reduction of the risk of accidental break-up and consequent generation of space debris, caused by on-board sources of energy or failure of mechanical parts

O2 MISSION PROFILE

•

3. hybrid-controlled re-entry delayed 2.3 years


O3 REPRESENTATIVE MODEL

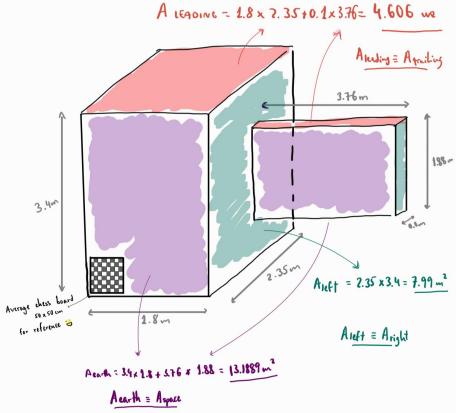
Representative Model - Croc

Parameters used in the DRAMA tools:

- Spacecraft:
 - 3.4 m height, 1.8 m width, 2.35 m depth
 - Solar panels: 1.88 m height, 3.76 m depth (surface area of 7.1 m² - Sentinel-2 model)
 - General drag coefficient 2.2 (constant)
 - Operational lifetime 10 years
 - Dry Mass 1000 kg
 - o SMA 780 km
- Space Environment
 - LEO environment
- Orbit Parameters

Average Cross Section: 12 m^2

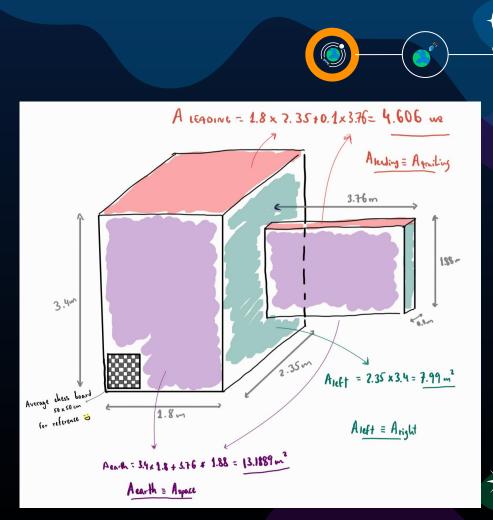
Single Averaged Elements		
Semi-major axis / km	7151.0	
Eccentricity / -	8.25E-5	
Inclination / deg	98.6	
Right asc. of asc. node / deg	60	
Argument of perigee / deg	80	



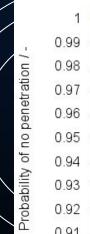
IMPACT RISK WITH MICROMETEORITES AND SPACE DEBRIS

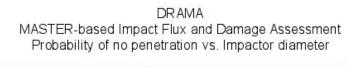
10

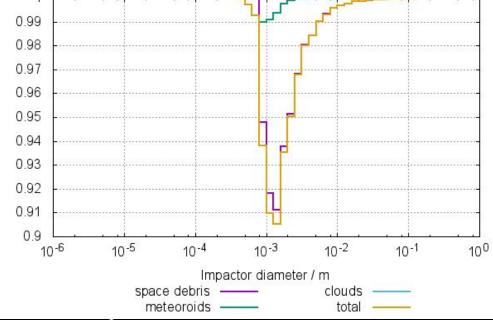
MIDAS ANALYSIS

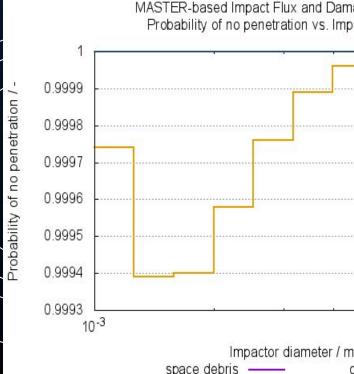


•


11


Surface Definition			
Switch (On/Off)	Earth-oriented 0.0		
Azimuth [deg]			
Elevation [deg]	90.0		
Surface area / m ²	13.1889		
Surface designation	Space		
Surface Definition			
	Fauth accounted		
Switch (On/Off)	Earth-oriented		
Azimuth [deg]	0.0 0.0 4.606 Leading		
Elevation [deg]			
Surface area / m ²			
Surface designation			
Surface Definition			
Switch (On/Off)	Earth-oriented		
Azimuth [deg]	-90.0		
Elevation [deg]	0.0		
Surface area / m ²	7.99		
Surface designation	Left		


•



First iteration:

- Full computation of the lifetime (10 years)
- Every object between 10^-6 and 1 m diameter taken into account
- 6 surfaces with equal walls: \bullet
 - Aluminium walls (Cour-Palais thin plate)
 - 0.5cm thickness

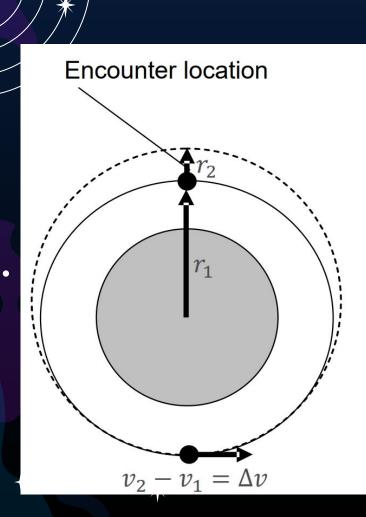
Leading face ~10% penetration Cross faces (Earth, Space, Left, Right)~1% penetration Trailing face ~0.014% penetration

meteoroids

DRAMA MASTER-based Impact Flux and Damage Assessment Probability of no penetration vs. Impactor diameter

Second Iteration:

- Small computation of the lifetime (1 year)
- Objects between 1 mm and 1 cm
- Slightly different walls:
 - 2 cm thickness for Leading face
 - 1 cm thickness for surrounding cross-faces
 - 0.5 cm thickness for trailing face

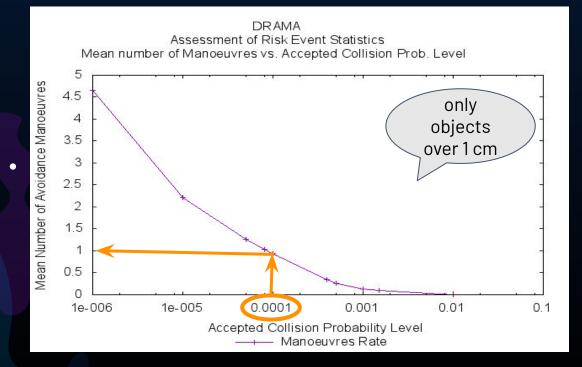

Leading face ~0.06% penetration Cross faces (Earth, Space, Left, Right) ~0.05% penetration Trailing face ~0.014% penetration

clouds

 10^{-2}

O5 Collision avoidance

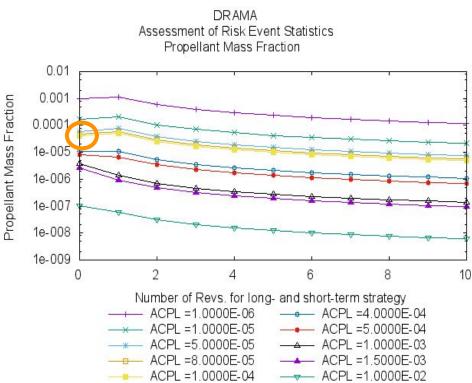
STRATEGY


Short-term manoeuvre strategy:

Along track Δv half a revolution before TCA

 REQ-030 cumulative collision probability of at least 10^-4 for objects that are greater than 1 cm in size

ARES Analysis



Input assumptions:

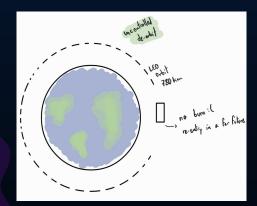
- Spacecraft radius : 1.9544 m (CROC)
- Cross-section area: 12 m²
 and using the assumption of a circular area
- Analysis epoch: 2016/11/01 (DRAMA population reference)
- ⇒ Mean number of Avoidance Manoeuvers = 1 / year

ARES Analysis

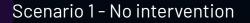
- accepted collision probability = 10^-4 (yellow line)
- <u>short te</u>rm strategy manoeuvre performed ¹/₂ revolutions before re-entry ⇒ propellant mass fraction • = 0.3989E-04
- propellant mass = 1000 kg * 0.3989E-04 = **39 g / year** to perform 1 avoidance maneuver

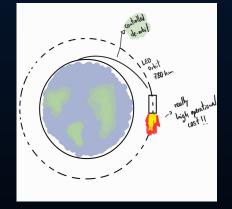
! We must return in our desired orbit after each avoidance maneuver \Rightarrow 78 g propellant / year

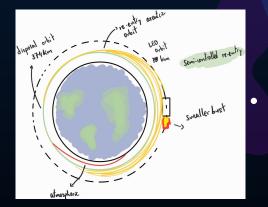
Total: 780 g propellant for collision avoidance in orbit


D DISPOSAL SCENARIOS

•

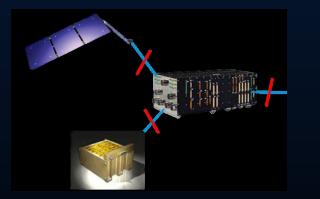


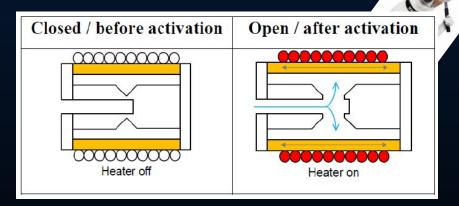

Disposal Scenarios

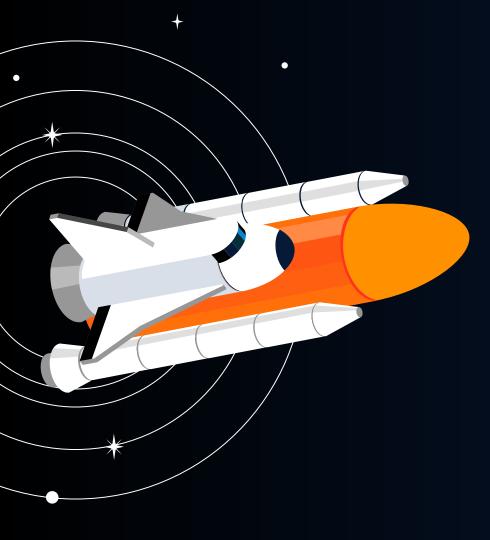


•

Scenario 2 - Direct disposal


Scenario 3 - Hybrid manoeuver





Scenario	Total disposal time	Total Propellant mass (kg)
1-controlled	45 min	97.17
2 - uncontrolled	>5 years	0.78
3 - hybrid	2.33 years	56.98

Passivation

O7 GROUND RISK ASSESSMENT

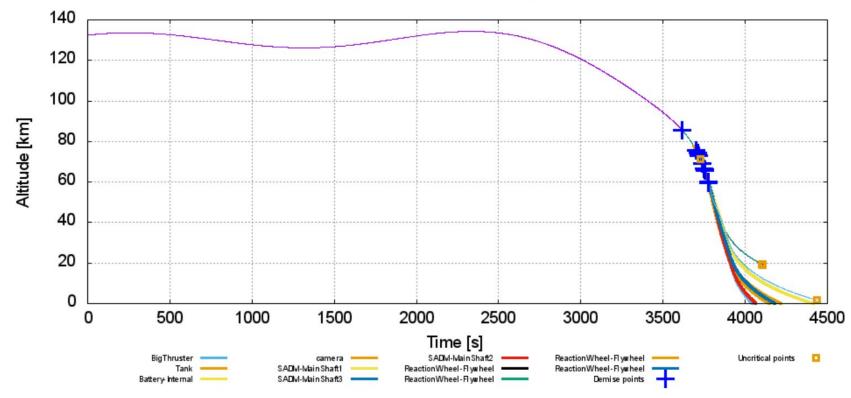
23

•

Ground Risk Assessment

SARA simulation was used to estimate the ground risk associated with reentry (controlled and uncontrolled).

To facilitate reasonable processing times the satellite was deemed to start at reentry attitude (120 km).

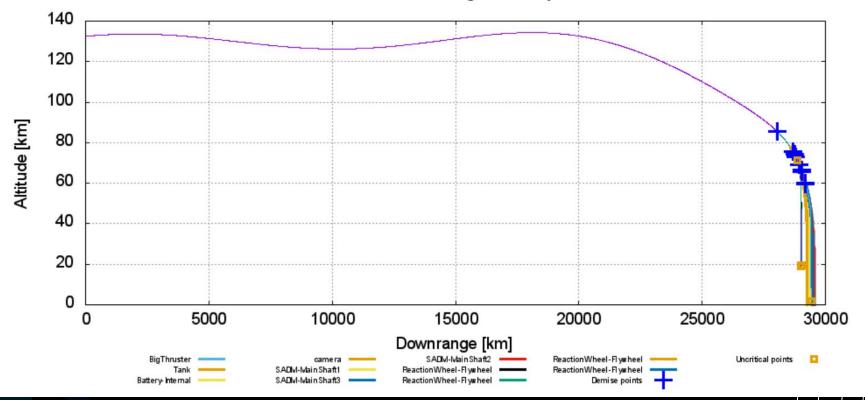

Component	Material	Mass
Tank	Titanium covered by Carbon Fiber (CFRP)	30 kg
Battery	Bat-Li	20 kg
Power Control Unit	AA7075	10 kg
SADM	AA7075	10 kg
4 Reaction Wheels	AA7075	34.44 kg
Camera	SiC	100 kg
Solar Panel	Solar Panel Material	100 kg
Big Thruster	Inconel 718	245.46 kg
Small Thruster x 8	Inconel 718	4 kg
Frame	AA7075	450 kg 🖌 24

٢

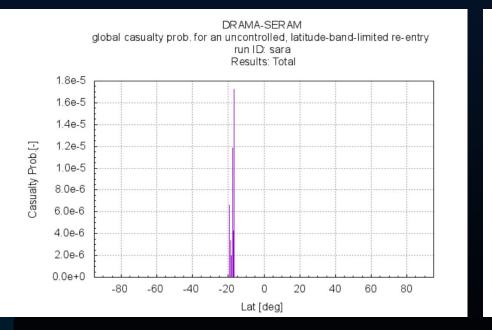
SARA - Altitude vs Time

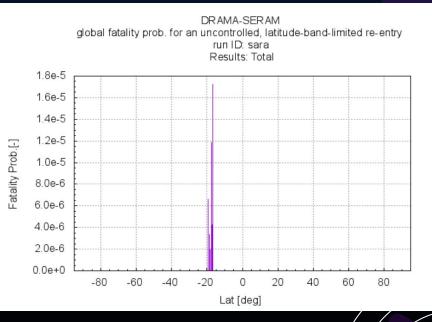
Altitude vs Time of all Objects

٢


25

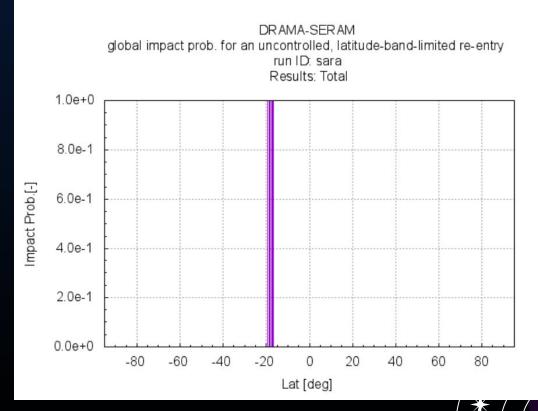
Ä




SARA - Altitude vs Downrange

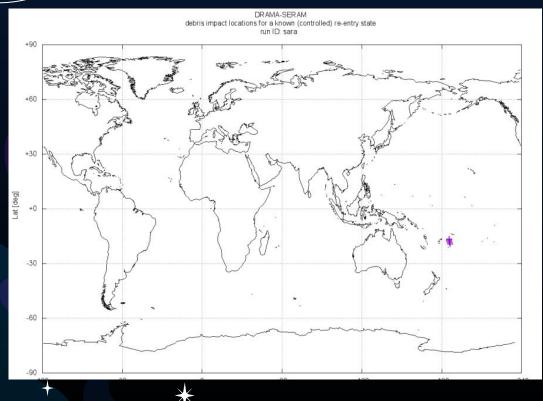
Altitude vs Downrange of all Objects

SARA - Casualty & Fatality

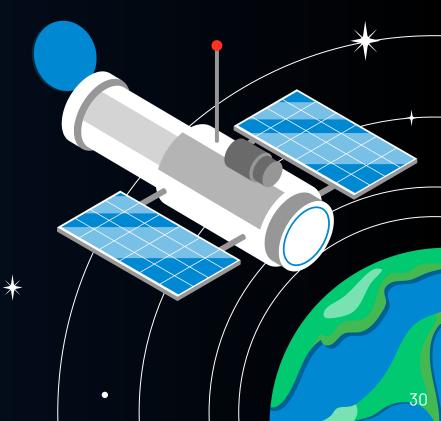


27

SARA - Impact Probability vs Latitude


This plot visualizes the **impact probability against the latitude** for any debris impacts.

٢


SARA - Impact Location

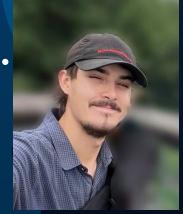
O8 Conclusions

•

Mission results

DISPOSAL

IN-ORBIT


۲

- Impact risk of micrometeoroids and space debris minimized through shielding-material analysis
- Collision avoidance strategy fulfill requirement through 1 maneuver / year with 78 g of propellant


Best strategy: hybrid-controlled re-entry

GROUND RISK ASSESSMENT

Impact site on the border of SPOUA - **compliance** with requirements about **casualty risks**

Joost Hubbard

Melina Kübler

Gurpreet Singh

lona Popa

Jose Triviño

OUR TEAM

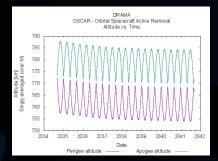
۲

•

Marta Scherillo

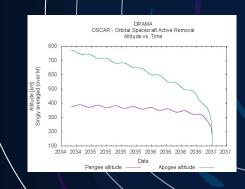
THANK YOU FOR Attention!

+



As requested by the esteemed judging department

Backup - Disposa


Scenario 1 - No intervention

CROC

Scenario 2 - Direct disposal

Scenario 3/- Hybrid manoeuver

