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1 Problem Statement

This paper aims to compare the effects of impulsive burns and continuous burns on spacecraft trajectories.
Spacecraft in orbit frequently need to reposition, whether for rendezvous or other operational reasons. To
instigate these orbital manoeuvres, thrust must be applied to the craft, typically in the form of a burn across
a specified period, giving the change in velocity (∆v) required to complete the manoeuvre.

The modelling of these manoeuvres can be split into two methods:

1. Impulsive Manoeuvre Modelling: Impulsive manoeuvres are idealised manoeuvres in which thrust
is applied instantaneously to change the magnitude and direction of the velocity vector. When thrust
is applied, the position of the spacecraft is assumed to be static while the velocity changes [1]. This,
of course, cannot exist in reality - requiring an infinite force to be applied across no change in time.
Despite this, the impulsive model is often appropriate for describing the impact of high-thrust, low-burn
times manoeuvres.

2. Non-Impulsive Manoeuvre Modelling: The second models the manoeuvre as a continuous appli-
cation of thrust (and resulting acceleration) over a period of time, gradually changing the velocity. As
a result of this, the position vector of the body is constantly moving while the force is applied. This is
a more realistic representation of thrust modelling, albeit still making some approximations. It is best
used to model low thrust, extended burn period manoeuvres [3].

2 Simulation Theory

The simulations in this section are split into impulse and non-impulse sections - outlining the process taken
to provide the results found in section 3.

2.1 Hill-Clohessy-Wiltshire Relative Motion

Both simulations are modelled within a relative frame - projecting a chaser spacecraft in the reference frame
of a target. This allows for simplified visual representation and simulation.

The Hill-Clohessy-Wiltshire (HCW) equations describe the relative motion of two satellites in close proximity
to each other in a circular orbit around a central body. Assuming the reference satellite (chief) is in a circular
orbit and the relative position vector of the deputy satellite with respect to the chief is (x, y, z), the HCW
equations are given by [4]:

ẍ− 3ω2x− 2ωẏ = 0, ÿ + 2ωẋ = 0, z̈ + ω2z = 0.

In these equations:

• ω is the orbital angular velocity of the chief satellite.

• x, y, and z represent the relative positions of the deputy satellite in the radial, in-track, and cross-track
directions, respectively.

• ẋ and ẏ represent the relative velocities in the radial and in-track directions, respectively.

• ẍ, ÿ, and z̈ represent the relative accelerations.
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These equations assume that the perturbations are small and that both satellites are point masses. The
central body (Earth) exerts a central gravitational force, and the satellites are assumed to be in close enough
proximity that the linearised approximation holds.

2.2 Impulsive Manoeuvre

The simulation of the impulsive manoeuvre took a simplified approach. In this case, the satellite was given
initial parameters as follows:

1. An initial position vector (with x,y and z components),

2. An initial velocity vector (with x,y and z components),

3. A specified time-step for the burn to start,

4. A post-burn velocity vector (with x,y and z components).

When the impulse was implemented, the velocity components were altered to those specified in the manoeuvre
at a chosen time step while the position vector remained constant. The spacecraft was then propagated with
its new velocity components going forward until the end of the simulation.

2.3 Non-Impulsive Manoeuvre

The simulation of the non-impulsive manoeuvre built upon the foundations of its impulsive counterpart -
taking steps to apply the thrust imparted from an extended burn. As before, the body was given initial
conditions, with a few changes:

1. An initial position vector (with x,y and z components),

2. An initial velocity vector (with x,y and z components),

3. A specified time-step for the burn to start,

4. A force vector for the thrust applied (with x,y and z components),

5. Wet and dry spacecraft masses,

6. A period for the burn.

At each time-step during the burn, acceleration is calculated from the spacecraft’s mass and applied force,
updating the velocity vector. The fuel mass used is then subtracted from the spacecraft’s total mass. This
process repeats until the burn ends or fuel runs out, after which the spacecraft’s conditions are propagated.
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Figure 1: Non-impulse code logic flowchart.

3 Results

The results section of this report displays the graphs and values output from both simulations in their
respective sections. Due to the plots being three-dimensional, an effort has been made to take multiple
screenshots for ease of understanding.

3.1 Simulation inputs

To facilitate a fair test, the simulation input parameters had to be as close to identical as possible between
the two simulations. The input parameters used are detailed in tables 1, 2 and 3:

Table 1: Shared impulse and non-impulse standardised input parameters.

Parameter Value
Satellite wet mass 5000 kg
Satellite dry mass 4000 kg
Gravitational parameter of Earth 398600.4418 km3/s2

Semi Major Axis 7000 km
Initial relative position vector of chaser [10.0, 9.0, -30.0] km
Initial relative velocity vector of chaser [3, 5, 0.1] km/s
Burn initiation time 2000 time steps
Time step 1 second
Simulation time period 10000 seconds

Table 2: Impulse input parameters.

Parameter Value
Force vector of thrust [0, 600000000, 0] N

Table 3: Non-impulse input parameters.

Parameter Value
Force vector of thrust [0, 100000, 0] N
Burn Duration 6000 seconds
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3.2 Without Manoeuvre

The simulation was initially completed without either type of manoeuvre, acting as a control for later com-
parison.

Figure 2: Simulation plot without manoeuvre (view 1).

Figure 3: Simulation plot without manoeuvre (view 2).

3.3 Impulsive Manoeuvre

The manoeuvre was first modelled as an impulse, an instantaneous velocity change was imparted by a specified
force.

Figure 4: Simulation plot of impulsive manoeuvre (view 2).
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Figure 5: Simulation plot of impulsive manoeuvre (view 2).

3.4 Non-Impulsive Manoeuvre

The final simulation involved a non-impulsive manoeuvre, which applies continuous, low-thrust forces over
an extended period.

Figure 6: Simulation plot of non-impulsive manoeuvre (view 2).

Figure 7: Simulation plot of non-impulsive manoeuvre (view 2).

4 Discussion

The comparison between impulsive and non-impulsive manoeuvres in spacecraft trajectory simulation reveals
several key insights into the practical applications and limitations of each approach.
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4.1 Impulsive Manoeuvres

Impulsive manoeuvres, as modelled in the simulations, provide a simplified yet effective means of under-
standing the immediate impact of high-thrust, short-duration burns on a spacecraft’s trajectory. While
not physically feasible, the instantaneous change in velocity approximates the effect of rapid burns well.
This method is useful for missions requiring quick adjustments, such as collision avoidance or rapid orbital
insertions.

However, the limitations of impulsive manoeuvres are also evident. The assumption of an instantaneous
application of force does not account for the physical limitations of spacecraft propulsion systems. Real-
world engines require finite time to ramp up and down, and during this period, the spacecraft continues to
move along its trajectory. Furthermore, the simulations do not consider potential instability and misalignment
issues that could arise from sudden thrust applications, which could lead to inaccuracies in the trajectory
prediction if not properly accounted for.

4.2 Non-Impulsive Manoeuvres

Non-impulsive manoeuvres, on the other hand, provide a more realistic model by applying continuous, low-
thrust over an extended period. This approach is particularly suitable for missions that require gradual
adjustments, such as station-keeping, orbital transfers, or fine-tuning of satellite positions. The simula-
tion results for non-impulsive manoeuvres show a smooth and gradual change in the spacecraft’s velocity
and position, reflecting the continuous application of thrust. This method allows for more precise control
over the spacecraft’s trajectory and is essential for long-duration missions where fuel efficiency and precise
manoeuvring are critical.

One significant advantage of non-impulsive manoeuvres is their ability to account for the gradual depletion of
fuel and the corresponding decrease in spacecraft mass, which directly affects thrust and acceleration. This
dynamic aspect makes the non-impulsive model more adaptable and accurate for long-term mission planning.

4.3 Comparative Analysis

Direct comparison of the two simulation methods is possible since both simulations are set up to impart an
equal force - one high thrust impulse and one across low thrust over 6000 seconds. The total displacement
impacted by the impulse manoeuvre is seen to be higher than that imparted by the extended non-impulse
- resulting in a different final position. This clearly shows a disparity between the two methods despite
imparting the same amount of total force in the same direction.

5 Conclusion

Since this paper is intended to be an exploratory record of progress, the conclusions reached are somewhat
limited. It is clear that there is a disparity between the trajectory simulation of impulse and non-impulsive
manoeuvres. This is expected given the frozen nature of velocity vectors in impulse manoeuvres as opposed
to their relation to time and non-impulsive manoeuvres. As discussed in the previously referenced orbital
mechanics textbook [3], this lends impulsive manoeuvre simulation to high-thrust, short burns while reserving
non-impulse simulation to low-thrust, extended burns.

To further develop this work, steps are being taken to implement the simulation of rotational motion in
axisymmetric variable mass systems, as covered by the paper ’Geometry of motion and nutation stability of
free axisymmetric variable mass systems’ [2].
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7 Appendix

7.1 Impulse Manoeuvre Python Script

1 import numpy as np

2 import plotly.graph_objects as go

3

4 # Gravitational parameter (mu) and mean motion (n)

5 mu = 398600.4418 # km^3/s^2 (gravitational parameter of Earth)

6 sma = 7000 # km (semi -major axis of the target ’s orbit)

7 n = np.sqrt(mu / sma **3) # mean motion of the target

8

9 # Initial conditions in the target ’s orbit reference frame

10 r0_chaser = np.array ([10.0 , 9.0, -30.0]) # Initial relative position of chaser , km

11 v0_chaser = np.array([3, 5, 0.1]) # Initial relative velocity of chaser , km/s

12 initial_mass = 5000 # Initial mass of the chaser , kg

13

14 # Thrust parameters

15 thrust_start_time = 2000 # Time delay before thrust starts in seconds

16 thrust_force = np.array([0, 600000000 , 0]) # Thrust force in N (converted to

km/s^2 later)

17 thrust_acceleration = thrust_force / initial_mass # Thrust acceleration in km/s^2

18 thrust_acceleration = thrust_acceleration * 1e-3 # Convert to km/s^2

19 print("Thrust acceleration (km/s^2):", thrust_acceleration)

20

21 # Time parameters

22 t_final = 10000 # Total simulation time , seconds

23 dt = 1 # Time step , seconds

24

25 # Time array

26 t = np.arange(0, t_final , dt)

27

28 # Position and velocity arrays

29 r_chaser = np.zeros ((len(t), 3))

30 v_chaser = np.zeros ((len(t), 3))

31

32 # Set initial conditions

33 r_chaser [0] = r0_chaser

34 v_chaser [0] = v0_chaser

35

36 # Clohessy -Wiltshire equations for relative motion

37 def clohessy_wiltshire(r, v, t, n):

38 x, y, z = r

39 x_dot , y_dot , z_dot = v

40

41 x_ddot = 3 * n**2 * x + 2 * n * y_dot

42 y_ddot = -2 * n * x_dot

43 z_ddot = -n**2 * z

44

45 return np.array ([x_dot , y_dot , z_dot ]), np.array ([x_ddot , y_ddot , z_ddot ])
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46

47 # Simulation loop

48 for i in range(1, len(t)):

49 # Get current state

50 r = r_chaser[i-1]

51 v = v_chaser[i-1]

52

53 # Find accelerations using Clohessy -Wiltshire equations

54 v_dot , a = clohessy_wiltshire(r, v, t[i], n)

55

56 # Apply thrust if within thrust duration

57 if thrust_start_time == t[i]:

58 a += thrust_acceleration

59

60 # Update position and velocity using Euler’s method

61 r_chaser[i] = r + v * dt

62 v_chaser[i] = v + a * dt

63

64 # Plotting with Plotly for interactive visualization

65 r_chaser_scaled = np.divide(r_chaser , sma)

66

67 # Create a trace for the chaser

68 trace = go.Scatter3d(

69 x=r_chaser_scaled [:, 0],

70 y=r_chaser_scaled [:, 1],

71 z=r_chaser_scaled [:, 2],

72 mode=’markers ’,

73 name=’Chaser Satellite ’,

74 marker=dict(

75 color=’blue’,

76 size=2

77 )

78 )

79

80 # Create marker for initial position

81 initial_trace = go.Scatter3d(

82 x=[ r_chaser_scaled [0, 0]],

83 y=[ r_chaser_scaled [0, 1]],

84 z=[ r_chaser_scaled [0, 2]],

85 mode=’markers ’,

86 name=’Initial Position ’,

87 marker=dict(

88 color=’black ’,

89 size=5

90 )

91 )

92

93 # Create a trace for the target

94 target_trace = go.Scatter3d(

95 x=[0],

96 y=[0],

97 z=[0],

98 mode=’markers ’,

99 name=’Target Satellite ’,

100 marker=dict(

101 color=’red’,

102 size=5

103 )

104 )
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105

106 # Create marker for start of thrust

107 thrust_start_trace = go.Scatter3d(

108 x=[ r_chaser_scaled[thrust_start_time , 0]],

109 y=[ r_chaser_scaled[thrust_start_time , 1]],

110 z=[ r_chaser_scaled[thrust_start_time , 2]],

111 mode=’markers ’,

112 name=’Thrust Point ’,

113 marker=dict(

114 color=’green’,

115 size=5

116 )

117 )

118

119 # Create the layout

120 layout = go.Layout(

121 title=’Relative Motion of the Chaser Satellite ’,

122 scene=dict(

123 xaxis=dict(title=’X/a [km]’),

124 yaxis=dict(title=’Y/a [km]’),

125 zaxis=dict(title=’Z/a [km]’)

126 )

127 )

128

129 # Create the figure and add the traces

130 fig = go.Figure(data=[trace , target_trace , thrust_start_trace , initial_trace],

layout=layout)

131

132 # Show the figure

133 fig.show()

7.2 Non-Impulse Manoeuvre Python Script

1 import numpy as np

2 import plotly.graph_objects as go

3 import math

4

5 # Gravitational parameter (mu) and mean motion (n)

6 mu = 398600.4418 # km^3/s^2 (gravitational parameter of Earth)

7 sma = 7000 # km (semi -major axis of the target ’s orbit)

8 n = np.sqrt(mu / sma **3) # mean motion of the target

9

10 # Initial conditions in the target ’s orbit reference frame

11 r0_chaser = np.array ([10.0 , 9.0, -30.0]) # Initial relative position of chaser , km

12 v0_chaser = np.array([3, 5, 0.1]) # Initial relative velocity of chaser , km/s

13

14 # Thrust parameters

15 thrust_start_time = 2000 # Time delay before thrust starts in seconds

16 thrust_duration = 6000 # Thrust duration in seconds

17 thrust_force = np.array([0, 100000 , 0]) # Thrust force in N

18 specific_impulse = 3000 # Specific impulse of the propulsion system , seconds

19 fuel_mass_inital = 1000 # Initial mass of the fuel

20 spacecraft_mass = 4000 # Initial dry mass of the craft , kg

21 total_mass_initial = spacecraft_mass + fuel_mass_inital # Initial total mass of

the spacecraft

22

23 # Time parameters

24 t_final = 10000 # Total simulation time , seconds
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25 dt = 1 # Time step , seconds

26

27 # Time array

28 t = np.arange(0, t_final , dt)

29

30 # Position and velocity arrays

31 r_chaser = np.zeros ((len(t), 3))

32 v_chaser = np.zeros ((len(t), 3))

33

34 # Set initial conditions

35 r_chaser [0] = r0_chaser

36 v_chaser [0] = v0_chaser

37

38 # Clohessy -Wiltshire equations for relative motion

39 def clohessy_wiltshire(r, v, t, n):

40 x, y, z = r

41 x_dot , y_dot , z_dot = v

42

43 x_ddot = 3 * n**2 * x + 2 * n * y_dot

44 y_ddot = -2 * n * x_dot

45 z_ddot = -n**2 * z

46

47 return np.array([x_dot , y_dot , z_dot ]), np.array ([x_ddot , y_ddot , z_ddot ])

48

49

50 # Initialize the flag variable before the loop

51 fuel_depleted_flag = False

52

53 #initialise current mass

54 current_mass = total_mass_initial

55

56 # Simulation loop

57 for i in range(1, len(t)):

58 # Get current state

59 r = r_chaser[i-1]

60 v = v_chaser[i-1]

61

62 # Find accelerations using Clohessy -Wiltshire equations

63 v, a = clohessy_wiltshire(r, v, t[i], n)

64 thrust_acceleration = np.array ([0.0, 0.0, 0.0])

65 # Calculate thrust acceleration using rocket equation

66 if thrust_start_time <= t[i] <= (thrust_start_time + thrust_duration):

67

68 if (current_mass - spacecraft_mass) > 0:

69 exhaust_velocity = specific_impulse * 9.81 # Exhaust velocity in m/s

70 thrust_acceleration = thrust_force / current_mass # Thrust

acceleration in m/s^2

71 thrust_acceleration = thrust_acceleration * 1e-3 # Convert thrust

acceleration to km/s^2

72 print("Thrust acceleration (km/s^2):", thrust_acceleration)

73 current_mass =

current_mass*math.exp((-(np.linalg.norm(thrust_acceleration)*dt))/( exhaust_velocity))

# Update mass of the spacecraft

74 else:

75 if not fuel_depleted_flag:

76 fueldepleted = True

77 print("fuel depleted at: ", t[i], "seconds")

78 fuel_depleted_flag = True

79 thrust_acceleration = np.array ([0.0, 0.0, 0.0]) # No thrust
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80

81 # Total acceleration

82 total_acceleration = a + thrust_acceleration

83

84 # Update position and velocity

85 r_chaser[i] = r + v * dt

86 v_chaser[i] = v + total_acceleration * dt

87

88

89 print("fuel used: ", (fuel_mass_inital -( current_mass - spacecraft_mass)) , "kg ,

out of ", fuel_mass_inital , "kg")

90

91

92

93

94 # Plotting with Plotly for interactive visualization

95 r_chaser_scaled = r_chaser / sma

96

97 # Create traces for plotting

98 trace = go.Scatter3d(

99 x=r_chaser_scaled [:, 0],

100 y=r_chaser_scaled [:, 1],

101 z=r_chaser_scaled [:, 2],

102 mode=’markers ’,

103 name=’Chaser Satellite ’,

104 marker=dict(

105 color=’blue’,

106 size=2

107 )

108 )

109

110 initial_trace = go.Scatter3d(

111 x=[ r_chaser_scaled [0, 0]],

112 y=[ r_chaser_scaled [0, 1]],

113 z=[ r_chaser_scaled [0, 2]],

114 mode=’markers ’,

115 name=’Initial Position ’,

116 marker=dict(

117 color=’black ’,

118 size=5

119 )

120 )

121

122 target_trace = go.Scatter3d(

123 x=[0],

124 y=[0],

125 z=[0],

126 mode=’markers ’,

127 name=’Target Satellite ’,

128 marker=dict(

129 color=’red’,

130 size=5

131 )

132 )

133

134 thrust_start_trace = go.Scatter3d(

135 x=[ r_chaser_scaled[thrust_start_time , 0]],

136 y=[ r_chaser_scaled[thrust_start_time , 1]],

137 z=[ r_chaser_scaled[thrust_start_time , 2]],
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138 mode=’markers ’,

139 name=’Thrust Start ’,

140 marker=dict(

141 color=’green’,

142 size=5

143 )

144 )

145

146 if (current_mass - spacecraft_mass) <= 0:

147 thrust_end_trace = go.Scatter3d(

148 x=[ r_chaser_scaled[fueldepleted , 0]],

149 y=[ r_chaser_scaled[fueldepleted , 1]],

150 z=[ r_chaser_scaled[fueldepleted , 2]],

151 mode=’markers ’,

152 name=’Thrust End’,

153 marker=dict(

154 color=’yellow ’,

155 size=5

156 )

157 )

158 else:

159 thrust_end_trace = go.Scatter3d(

160 x=[ r_chaser_scaled[thrust_start_time+thrust_duration , 0]],

161 y=[ r_chaser_scaled[thrust_start_time+thrust_duration , 1]],

162 z=[ r_chaser_scaled[thrust_start_time+thrust_duration , 2]],

163 mode=’markers ’,

164 name=’Thrust End’,

165 marker=dict(

166 color=’yellow ’,

167 size=5

168 )

169 )

170

171 # Create the layout

172 layout = go.Layout(

173 title=’Relative Motion of the Chaser Satellite ’,

174 scene=dict(

175 xaxis=dict(title=’X/a [km]’),

176 yaxis=dict(title=’Y/a [km]’),

177 zaxis=dict(title=’Z/a [km]’)

178 )

179 )

180

181 # Create the figure and add the traces

182 fig = go.Figure(data=[trace , target_trace , thrust_start_trace , thrust_end_trace ,

initial_trace], layout=layout)

183

184 # Show the figure

185 fig.show()
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