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1. Introduction 

Through the pursuit of comets and other stellar objects, invaluable advancements can be made in 

understanding the birth of our solar system. Frozen ice on a comets surface can often be dated 

back to the origin of the universe – providing insight into the chemical composition and 

conditions present during the early stages of solar system format comets and other stellar objects, 

invaluable advancements can be made in understanding ion. comets and other stellar objects, 

invaluable advancements can be made in understanding Additionally, studying the trajectories 

and behaviour of comets can offer clues about the dynamics of the early solar system and the 

processes that shaped its evolution over billions of years (Snodgrass, 2019). 

Missions such as the European Space Agency’s Comet Interceptor are positioned to provide 

insights at exceedingly short notice - a feat achieved through meticulous mission planning and 

prediction. By positioning a satellite in a halo around the Lagrange Point 2 (L2) point, it is ready 

to conduct interception manoeuvres with any incoming comets as they pass through the elliptic 

plane. This is particularly interesting due to the minimal station keeping requirement around L2 

– allowing the satellite to remain in an operational orbit almost indefinitely.  

To achieve this, three major steps were taken as detailed below and reflected in figure 1: 

1. Launch the spacecraft from Earth and position it at L2, where it remains stationed until a 

suitable comet is identified. 

2. When a comet is discovered, the satellite transitions to an orbit which intercepts with the 

comet on the elliptical plane – cruising on that orbit until optimum position is reached. 

3. Execute the intercept, ensuring time constraints are accounted for, to allow for the 

gathering of data.  

 

Figure 1 - Sketch of mission phases. The trajectory of the spacecraft is in green, while the 

comet’s orbit is in red (Snodgrass, 2019). 
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1.1 Report Specification 

In the case of this report, a similar mission will be designed and optimised – proposing the 

intercept of a comet in an inclined, elliptical, heliocentric orbit. The given parameters for this 

assignment can be found below in table 1. 

Table 1 - Parameters given for calculation. 

Basic Data 

Universal Gravitational 

Unit 6.674E-11 Nm^2/kg^2 

1 Astronomical Unit 149597870 km 

Equatorial Radius of Sun 693634 km 

µsun 1.327E+11 km^3/s^2 

µearth 398600 km^3/s^2 

Earth Mass 5.97E+24 kg 

Earth Orbit Radius 1 Au 

Sun Mass 1.99E+30 kg 

Spacecraft Properties 

Eccentricity 0 - 

Inclination to Ecliptic 0 ° 

Initial Orbit Radius 8242.5675 km 

Comet Properties 

Semi Major Axis 3.464737 Au 

Eccentricity 0.6405847 - 

Inclination  7.0436987 ° 

Argument of Perihelion 12.694464 ° 

Mass 1.1E+12 kg 

 

2. Questions 1-5 

The theory section of this report outlines the equations and background used for calculation. 

Each section includes a detailed explanation and references where appropriate. Answers are 

highlighted in green. 

2.1 Part 1 

‘Draw a new diagram of the Comet’s orbit indicating clearly where this orbit intersects with the 

ecliptic plane, the two distances (i.e. as Comet approaches the Sun and then where it is moving 

away from the sun) from the Sun at these points and any other relevant or important features. 

Calculate the Earth-L2 and the L2-Comet distances at both the pre-perhelion and post-perhelion 

points of interception.’ 

Prior to completing a new diagram, the requested distances must be calculated. These distances 

are those between Earth and L2 as well as the comet and L2 (at both pre and post Helion points 

of interception). These points of interception are also referred to as the descending and ascending 

nodes respectively. 
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2.1.1 Earth – L2 Distance  

To find the distance between the Earth and the L2 point, we must first find the Earth’s orbital 

period (T). 

𝑇𝐸𝑎𝑟𝑡ℎ = (365.24𝑑𝑎𝑦𝑠) (24
ℎ𝑟

𝑑𝑎𝑦
) (60

𝑚𝑖𝑛

ℎ𝑟
) (60

𝑠𝑒𝑐𝑠

𝑚𝑖𝑛
) = 31,556,736 𝑠𝑒𝑐𝑜𝑛𝑑𝑠      [1.1] 

The force between two bodies can be found by relating the universal gravitational constant (G), 

distance between the centre of the two bodies (r) and the masses of the two objects (𝑚1 and 𝑚2). 

𝐹 =
𝐺𝑚1𝑚2

𝑟2
 [1.2] 

In the case of the L2 point, both the gravitational effect of the Sun and Earth have influence. This 

gives the equation for the force acting on an object at L2 as a balance between the Earth and the 

Sun. This new equation makes use of equation [1.2] and takes into account the mass of the object 

at the L2 point (𝑚𝑜𝑏𝑗𝑒𝑐𝑡). The distances between the Earth and L2 (𝑟𝐸𝑎𝑟𝑡ℎ−𝐿2) as well as between 

the Earth and the Sun (𝑟𝑆𝑢𝑛−𝐸𝑎𝑟𝑡ℎ) are also considered. 

𝐹𝑜𝑏𝑗𝑒𝑐𝑡 =
𝐺𝑚𝑠𝑢𝑛𝑚𝑜𝑏𝑗𝑒𝑐𝑡

(𝑟𝑆𝑢𝑛−𝐸𝑎𝑟𝑡ℎ+𝑟𝐸𝑎𝑟𝑡ℎ−𝐿2)2 +
𝐺𝑚𝑒𝑎𝑟𝑡ℎ𝑚𝑜𝑏𝑗𝑒𝑐𝑡

𝑟𝐸𝑎𝑟𝑡ℎ−𝐿2
2  [1.3] 

The force on the object can also be represented as a relationship between mass and acceleration – 

as per newtons second law. The centripetal acceleration of the satellite can be derived as a 

relationship between the period of the L2 point and the radius of the L2 orbit. It should be noted 

that the L2 has the same orbital period as the Earth ( AURA’s Space Telescope Science Institute, 

2021) and as such T is that from equation 1.1. 

𝐹𝑜𝑏𝑗𝑒𝑐𝑡 = 𝑚𝑜𝑏𝑗𝑒𝑐𝑡  × 𝑎𝑜𝑏𝑗𝑒𝑐𝑡 [1.4]     𝑎𝑐 = (
2𝜋

𝑇
)

2

(𝑟𝑆𝑢𝑛−𝐸𝑎𝑟𝑡ℎ + 𝑟𝐸𝑎𝑟𝑡ℎ−𝐿2) [1.5] 

The previous equations, 1.3, 1.4 and 1.5 can be combined to derive a new relationship associated 

with the L2 point. The mass of the object (𝑚𝑜𝑏𝑗𝑒𝑐𝑡) can be cancelled since it is on both sides of 

the equation. 

𝐺𝑚𝑠𝑢𝑛

(𝑟𝑆𝑢𝑛−𝐸𝑎𝑟𝑡ℎ + 𝑟𝐸𝑎𝑟𝑡ℎ−𝐿2)2
+

𝐺𝑚𝑒𝑎𝑟𝑡ℎ

𝑟𝑒𝑎𝑟𝑡ℎ−𝐿2
2 = (

2𝜋

𝑇
)

2

(𝑟𝑆𝑢𝑛−𝐸𝑎𝑟𝑡ℎ + 𝑟𝐸𝑎𝑟𝑡ℎ−𝐿2) [1.6] 

Substituting for known values gives an equation in terms of 𝑟𝐸𝑎𝑟𝑡ℎ−𝐿2 that can be solved. 

(6.67408 × 10−11Nm2/kg2)(1.99 × 1030𝑘𝑔)

(𝑟𝑒𝑎𝑟𝑡ℎ−𝐿2 + 1.49598𝑥1011𝑚)2
+

(6.67408 × 10−11Nm2/kg2)(5.97 × 1024𝑘𝑔)

𝑟𝑒𝑎𝑟𝑡ℎ−𝐿2
2

= (
2𝜋

31,556,736𝑠𝑒𝑐𝑠 
)

2

(𝑟𝑒𝑎𝑟𝑡ℎ−𝐿2 + 1.49598 × 1011𝑚) 

To solve the equation for 𝑟𝐸𝑎𝑟𝑡ℎ−𝐿2 a graphical approach was used. This involved plotting the 

gravitational and centripetal acceleration experienced at the L2 point – with the intercept 

determining the distance between Earth and the L2 point. From this, 𝑟𝐸𝑎𝑟𝑡ℎ−𝐿2 was determined to 
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lie 1512500 km or 0.01 AU away from Earth. This represents an 0.83% error compared to 

externally given figures of 1500000 km (Vepa, 2024). 

 

Graph 1 - Acceleration experienced at l2 with distance between earth and l2. Full graph. 

 

Graph 2 - Acceleration experienced at l2 with distance between earth and l2. Focus on intercept. 
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2.1.2 Comet – L2 Distance 

Next, the node distances were calculated. This was done using the properties of ellipses to relate 

the distance of the node from the Sun (𝑟𝑛𝑜𝑑𝑒), the semi major axis (a), the eccentricity (e) and the 

augment of periapsis (𝜔). 

𝑟𝑛𝑜𝑑𝑒 = 𝑎(1 − 𝑒2)(
1

𝑒𝑐𝑜𝑠𝜔+1
) [1.7] 

Substituting known values into equation 1.7 gives the following equations and results for the 

descending (𝑟𝑑𝑒𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑛𝑜𝑑𝑒) and ascending (𝑟𝑎𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑛𝑜𝑑𝑒) node distances. It should be noted 

that all angles have been translated into radians for ease of calculation. 

𝑟𝑑𝑒𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 = 518317278 𝑘𝑚 × (1 −

0.6405847372)(
1

0.640584737×𝑐𝑜𝑠( 𝜋+0.221560194 𝑟𝑎𝑑𝑠)+1
)   = 814843255.2 km or 5.45 AU 

  𝑟𝑎𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 = 518317278 𝑘𝑚 × (1 − 0.6405847372)(
1

0.640584737×𝑐𝑜𝑠( 0.221560194 𝑟𝑎𝑑𝑠)+1
) = 

188086334.5 km or 1.26 AU 

Subsequently, the distance between both nodes and the L2 point can be calculated. First, the 

distance between the Sun and the L2 point.  

𝑟𝑆𝑢𝑛−𝐿2 = 𝑟𝐸𝑎𝑟𝑡ℎ−𝐿2 + 𝑟𝑆𝑢𝑛−𝐸𝑎𝑟𝑡ℎ  [1.8] 

Substituting given values, it can be found: 

1512500 𝑘𝑚 +  149597870 𝑘𝑚 = 151110370 𝑘𝑚 

Using this value, the comet node to L2 distances can be determined. 

𝑟𝑐𝑜𝑚𝑒𝑡−𝐿2 = 𝑟𝑛𝑜𝑑𝑒 − 𝑟𝑆𝑢𝑛−𝐿2 [1.9] 

Substituting given values, it can be found: 

𝑟𝑐𝑜𝑚𝑒𝑡 − 𝑑𝑒𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 =  814843255.2 𝑘𝑚 − 151110370 𝑘𝑚 = 663732885.2 km or 

4.436780318 AU 

𝑟𝑐𝑜𝑚𝑒𝑡− 𝑎𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 =  188086334.5 𝑘𝑚 − 151110370 𝑘𝑚 = 36975964.54 km or 

0.247169058 AU 

2.1.3 New Diagram  

Finally, a new diagram of the comet’s orbit is created, highlighting important features such as: 

• The inclination of the comet’s orbit (𝑖), 

• The argument of periapsis (𝜔), 

• The initial orbit of the satellite (r), 

• The apoapsis of the comets orbit, 

• The periapsis of the comets orbit, 

• The semi major axis (a), 

• The distance to the descending node of the comets orbit (b), 
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• The distance to the ascending node of the comets orbit (c), 

• The distance between Earth and L2 (d). 

 

 

Figure 2 - New diagram of the comet's orbit. 

 

2.2 Part 2 

‘Calculate the minimum values of ΔV (in km/s) that would be required to take the satellite from 

its parking orbit about the Earth to the L2 location. Calculate the ΔV (magnitude and direction) 

that would be required to change the velocity of the spacecraft as it intersects the L2 orbit, so 

that it could then fly alongside the L2 in the same orbit as the L2. You should explain in words as 

well as writing down the equations, what manoeuvre would be performed and whether there are 

any options that could affect the magnitude of the ΔV.’ 

To solve this problem, there are two stages of transfer that must be completed. First, the satellite 

must escape from earths sphere of influence, only then being able to transfer into a heliocentric 

orbit alongside L2. The escape stage can be completed using a hyperbolic orbit while the second 
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must be a prograde Hohmann transfer. The satellites orbit will increase at each stage of this 

manoeuvre. 

2.2.1 Heliocentric Hohmann Transfer from Earth to L2  

For ease of calculation, the Hohmann transfer to the L2 point is completed first. To do this, the 

velocity at both the initial and final orbit is calculated using equation [2.1]. This makes use of a 

relationship between standard gravitational perimeter of a central body (𝜇) and the radii of an 

objects orbit around said body (r).  

𝑣 = √
𝜇

𝑟 
 [2.1] 

Taking the initial and final orbits to that of Earth and L2 respectively, the velocity can be found 

by substituting in given values. It should be noted that the  

𝑣𝐸𝑎𝑟𝑡ℎ =  √
1.32747×1011 𝑘𝑚3/𝑠2

149597870 𝑘𝑚
 = 29.78862043 km/s 

 𝑣𝐿2 =  √
1.32747×1011 𝑘𝑚3/𝑠2

151110370 𝑘𝑚
 = 29.63916477 km/s 

Next, the velocities at the perigee and apogee of the transfer orbit must be determined. This can 

be completed utilising a relationship between the specific angular momentum of the transfer 

orbit (ℎ𝑡) alongside both the perigee and apogee radii (𝑟𝑎 and 𝑟𝑝). The perigee and apogee radii 

can be taken to equal to the initial and final radii respectively.  

𝑟𝑝 = 𝑟𝑆𝑢𝑛−𝐸𝑎𝑟𝑡ℎ = 149597870 km                   𝑟𝑎 = 𝑟𝑆𝑢𝑛−𝐿2 = 151110370 km 

The specific angular momentum of the transfer orbit is given by equation 2.2. 

ℎ𝑡 = √
2𝜇𝑟𝑎𝑟𝑝

𝑟𝑎+𝑟𝑝
 [2.2] 

Substituting values gives the angular momentum of the transfer orbit. 

ℎ𝑡 = √
2×1.32747×1011 𝑘𝑚3/𝑠2× 151110370 km×149597870 km

151110370 km+149597870 km
 = 4467507276 𝑘𝑚2/𝑠 

The perigee and apogee velocities (𝑣𝑝 and 𝑣𝑎) are then found using equation 2.3. 

𝑣 =
ℎ𝑡

𝑟
  [2.3] 

Substituting in the previously calculated values, the velocity at the apogee and perigee of the 

transfer obit can be calculated. 

𝑣𝑝 =
4467507276 𝑘𝑚2/𝑠

149597870 km
 = 29.86344175 km/s 

𝑣𝑎 =
4467507276 𝑘𝑚2/𝑠

151110370 km
 = 29.56453139 km/s 
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To compute delta-v (∆v) values for the Hohmann transfer, one calculates the velocity disparities 

between the initial orbit and the perigee, and between the final orbit and the apogee. Adding 

these differences together provides the total delta-v. 

∆𝑣𝑖𝑛𝑖𝑡𝑎𝑙− 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 =  |𝑣𝑝 − 𝑣𝑖𝑛𝑖𝑡𝑎𝑙| [2.4] 

∆𝑣𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟−𝑓𝑖𝑛𝑎𝑙 =  |𝑣𝑎 − 𝑣𝑓𝑖𝑛𝑎𝑙| [2.5] 

∆𝑣𝐻𝑜ℎ𝑚𝑎𝑛𝑛 =  |𝑣𝑖𝑛𝑖𝑡𝑎𝑙−𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 + 𝑣𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟−𝑓𝑖𝑛𝑎𝑙| [2.6] 

Using given and calculated values, equations 2.4, 2.5 and 2.6 can be utilised. 

∆𝑣𝐸𝑎𝑟𝑡ℎ− 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 =  |29.86344175 𝑘𝑚/𝑠 − 29.78862043 km/s| = 0.074821321 𝑘𝑚/𝑠 

∆𝑣𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟−𝐿2 =  |29.56453139 km/s − 29.63916477 km/s| = 0.074633388 𝑘𝑚/𝑠  

∆𝑣𝐻𝑜ℎ𝑚𝑎𝑛𝑛 =  |0.074821321 𝑘𝑚/𝑠 + 0.074633388 𝑘𝑚/𝑠| = 0.149454709 𝑘𝑚/𝑠  

2.2.2 Earth Escape 

Prior to conducting the Hohmann transfer from Earth to the L2 point, the satellite must escape 

Earths sphere of influence (SOI). This departure is conducted using a hyperbolic orbit which 

must be designed and then transferred to from the satellite’s parking orbit. Initially, the velocity 

of the parking orbit must be determined – making use of equation 2.1. It should be noted that in 

this case the standard gravitational perimeter of Earth is used. 

𝑣𝑝𝑎𝑟𝑘𝑖𝑛𝑔 = √
398600 𝑘𝑚3/𝑠2 

8242.567481 𝑘𝑚
= 6.954043316 𝑘𝑚/𝑠 

Next, the specific mechanical energy associated with the escape trajectory (𝜀∞𝐸𝑎𝑟𝑡ℎ) can be 

determined. This can be found as a function of the escape velocity of the satellite (𝑣∞𝐸𝑎𝑟𝑡ℎ)  with 

respect to the Earth. This value has already been established as ∆𝑣𝐸𝑎𝑟𝑡ℎ− 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 and as such can 

be used for calculation. 

𝜀∞𝐸𝑎𝑟𝑡ℎ =  
𝑣∞𝐸𝑎𝑟𝑡ℎ

2

2
+

𝜇𝐸𝑎𝑟𝑡ℎ

𝑟𝐸𝑎𝑟𝑡ℎ 𝑆𝑂𝐼
 [2.7] 

It should be noted that since the sphere of influence radius of Earth (𝑟𝐸𝑎𝑟𝑡ℎ 𝑆𝑂𝐼) is orders of 

magnitude larger than the standard gravitational parameter of Earth (𝜇𝐸𝑎𝑟𝑡ℎ), the second term in 

equation 2.7 can be taken to be zero. Substituting in given values gives the following result: 

𝜀∞𝐸𝑎𝑟𝑡ℎ =  
0.074821321 𝑘𝑚/𝑠 2

2
= 0.002799115  𝑘𝑚2/𝑠2 

 

Using this, the velocity of the hyperbolic orbit can be found.  
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𝑣𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐 = √2(
𝜇𝐸𝑎𝑟𝑡ℎ

𝑟𝑝𝑎𝑟𝑘𝑖𝑛𝑔
+ 𝜀∞𝐸𝑎𝑟𝑡ℎ) [2.8] 

Substituting in associated values gives the following equation: 

𝑣𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐 = √2(
398600 𝑘𝑚3/𝑠2

8242.567481 𝑘𝑚
+ 0.002799115  𝑘𝑚2/𝑠2) = 9.834786988 𝑘𝑚/𝑠 

Similar to how the Hohmann transfer delta v is calculated, the escape delta v (∆𝑣𝑒𝑠𝑐𝑎𝑝𝑒) is found 

as the velocity difference between the initial and hyperbolic orbits. 

∆𝑣𝑒𝑠𝑐𝑎𝑝𝑒 =  𝑣𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐 − 𝑣𝑝𝑎𝑟𝑘𝑖𝑛𝑔 [2.9] 

∆𝑣𝑒𝑠𝑐𝑎𝑝𝑒 = 9.834786988 𝑘𝑚/𝑠 − 6.954043316 𝑘𝑚/𝑠 = 2.880743672 𝑘𝑚/𝑠  

2.2.3 Total Delta V 

The concluding step involves determining the total delta v required for the satellite's transition 

from its parking orbit to the L2 point (∆𝑣𝐸𝑎𝑟𝑡ℎ−𝐿2). This entails combining the delta v values 

obtained from the preceding two sections: the escape manoeuvre and the subsequent Hohmann 

transfer.  

∆𝑣𝐸𝑎𝑟𝑡ℎ−𝐿2 = ∆𝑣𝐻𝑜ℎ𝑚𝑎𝑛𝑛 + ∆𝑣𝑒𝑠𝑐𝑎𝑝𝑒 [2.10] 

Substituting in associated values gives the following equation: 

∆𝑣𝐸𝑎𝑟𝑡ℎ−𝐿2 = 0.149454709 𝑘𝑚/𝑠 + 2.880743672 𝑘𝑚/𝑠 =  3.030198382 𝑘𝑚/𝑠 

 

2.3 Part 3 

‘Calculate the ΔV (magnitude and direction) that would be required to change the velocity of the 

spacecraft as it intersects the cometary orbit. Again, you should explain in words as well as 

writing down the equations, what manoeuvre would be performed and whether there are any 

options that could affect the magnitude of the ΔV.’ 

To complete part three, a transition from the L2 point to both the ascending and descending 

nodes must be completed. This is completed using a prograde Hohmann transfer where the initial 

orbit is that of L2 and the final is a helio-centric orbit at the same altitude as the relevant node. In 

both cases the transfer increases the altitude of the satellite. 

2.3.1 Transfer to Descending Node 

First, the velocity at the orbit associated with the descending node must be calculated using 

equation 2.1. It should be noted that the standard gravitational perimeter (µ) used is that of the 

sun. 

𝑣𝑑𝑒𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 = √
1.32747 × 1011 𝑘𝑚3/𝑠2

814843255.2 𝑘𝑚
= 12.76368443 𝑘𝑚/𝑠 
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Following this, the angular momentum of the transfer orbit can be calculated from the equation 

2.2. In this case, the radius of the apogee (𝑟𝑎) is that between the node and the sun. The radius of 

perigee (𝑟𝑝) is that of the L2 orbit.  

ℎ𝑡 = √
2 × 1.32747 × 1011 𝑘𝑚3/𝑠2 ×  814843255.2 km × 151110370 km

814843255.2 km + 151110370 km
= 5817469662 𝑘𝑚2/𝑠 

Using this value, the velocity of the apogee and perigee of the transfer orbit can be determined 

from equation 2.3. 

𝑣𝑝 =
5817469662 𝑘𝑚2/𝑠

151110370 km
 = 38.49814981 km/s 

𝑣𝑎 =
5817469662 𝑘𝑚2/𝑠

814843255.2 km
 = 7.139372664 km/s 

 Finally, the total delta v of the Hohmann transfer can be determined. This can be made more 

concise by combining equations 2.4, 2.5 and 2.6. 

∆𝑣𝐿2−𝑑𝑒𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 =  |12.76368443 𝑘𝑚/𝑠 − 7.139372664 𝑘𝑚/𝑠| + |29.63916477 𝑘𝑚/𝑠 − 38.49814981 𝑘𝑚/𝑠|

= 14.4832968 𝑘𝑚/𝑠  

2.3.2 Transfer to Ascending Node 

As before, the velocity at the orbit associated with the descending node must be calculated using 

equation 2.1. It should be noted that the standard gravitational perimeter (µ) used is that of the 

sun. 

𝑣𝑎𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 = √
1.32747 × 1011 𝑘𝑚3/𝑠2

188086334.5 𝑘𝑚
= 26.56650808 𝑘𝑚/𝑠 

Following this, the angular momentum of the transfer orbit can be calculated from the equation 

2.2. In this case, the radius of the apogee (𝑟𝑎) is that between the node and the sun. The radius of 

perigee (𝑟𝑝) is that of the L2 orbit.  

ℎ𝑡 = √
2 × 1.32747 × 1011 𝑘𝑚3/𝑠2 ×  814843255.2 km × 151110370 km

188086334.5 km + 151110370 km
= 4716589038 𝑘𝑚2/𝑠 

Using this value, the velocity of the apogee and perigee of the transfer orbit can be determined 

from equation 2.3. 

𝑣𝑝 =
4716589038 𝑘𝑚2/𝑠

151110370 km
 = 31.21287465 km/s 

𝑣𝑎 =
4716589038 𝑘𝑚2/𝑠

188086334.5 km
 = 25.07672367 km/s 

 Finally, the total delta v of the Hohmann transfer can be determined. This can be made more 

concise by combining equations 2.4, 2.5 and 2.6. 
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∆𝑣𝐿2−𝑎𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑛𝑜𝑑𝑒 =  |26.56650808 𝑘𝑚/𝑠 − 25.07672367 𝑘𝑚/𝑠| + |31.21287465 𝑘𝑚/𝑠 − 29.63916477 𝑘𝑚/𝑠|

= 3.063494286 𝑘𝑚/𝑠  

2.4 Part 4 

‘Calculate how close your spacecraft will need to approach the comet in order for the spacecraft 

motion to be dominated by the comet rather than the being dominated by the gravitational field 

of the sun.’ 

To determine the sphere of influence of the comet, a similar method to the determination of the 

position of the L2 point completed in section 2.1.1 was used. In this case, it is clear that the 

altitude at which the spacecraft will orbit the comet is heavily influenced by the comet’s 

proximity to the sun. This can be demonstrated by existence of a distance term in equation 1.2. 

To account for this, the proximity required to orbit the comet will be calculated for both the 

ascending and descending nodes. 

The gravitational acceleration equilibrium equation for the each node can be derived by equating 

the gravitational acceleration force of the comet and the Sun in terms of the radius of the 

satellites orbit around the sun (𝑟𝑡𝑎𝑟𝑔𝑒𝑡). This is based on equation 1.2. 

𝐺𝑚𝑠𝑢𝑛𝑚𝑠𝑎𝑡

𝑟𝑆𝑢𝑛
2 =

𝐺𝑚𝑐𝑜𝑚𝑒𝑡𝑚𝑠𝑎𝑡

𝑟𝑡𝑎𝑟𝑔𝑒𝑡
2   [4.1] 

It is worth noting that 𝑟𝑠𝑢𝑛is the distance between Sun and the comet minus the altitude of the 

satellites orbit 𝑟𝑡𝑎𝑟𝑔𝑒𝑡. 

2.4.1 Ascending Node 

The gravitational acceleration equilibrium equation for the ascending node must be created and 

the solved for 𝑟𝑡𝑎𝑟𝑔𝑒𝑡. At the ascending node the spacecraft would need to fly-by the comet at 

less than 0.14 km. This is determined using the intercept using graph 3 and a comet altitude of 

1.257279496 AU. 
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Graph 3 - Acceleration experienced by the satellite with altitude above the comet at the 

ascending node. 

2.4.2 Descending Node 

At the descending node the spacecraft would need to fly-by the comet at less than 0.6 km. This is 

determined using the intercept on graph 4 and a comet altitude of 5.446890756 AU. 

Graph 4 - Acceleration experienced by the satellite with altitude above the comet at the 

descending node. 

2.5 Part 5 

‘Consider the results obtained in section C and compare which mission profile results in the 

lowest overall ΔV in respect to whether your solution for section B provides this overall 

minimum ΔV for the mission. Comment upon these findings. Extend your discussion regarding 

the mission selection by consideration of other features not considered thus far including other 

mission profiles, supported by appropriate calculations in order to establish which of these may 

influence the final mission selection.’ 

Across this report, two differing mission profiles have been examined for the intercept of the 

comets orbit. Within mission profile one the satellite begins in its parting orbit, escapes earths 

SOI and establishes a parking orbit alongside the L2 point. The satellite then transfers from the 

L2 point to the descending node for the comet fly-by. The second mission profile is the same for 

the first two steps but then commits to a comet fly by the alternate intercept point with the 

elliptical plane – the ascending node. 

To compare the two profiles the total delta v must be compared. This can be done by totalling the 

sum of the delta v across both profiles. As stated, prior, mission profile one is associated with the 

descending node while profile two is the ascending. 
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∆𝑣𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 1 = |3.030198382 𝑘𝑚/𝑠 + 14.4832968 𝑘𝑚/𝑠 | = 17.513495182 𝑘𝑚/𝑠 

∆𝑣𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 2 = |3.030198382 𝑘𝑚/𝑠 + 3.063494286 𝑘𝑚/𝑠  | = 6.093692668 𝑘𝑚/𝑠 

∆𝑣𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 1 > ∆𝑣𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 2 

From this it can be determined that the determined that the total delta v for first mission profile is 

significantly higher than that of mission profile two. This is to be expected since the ascending 

node is much closer to the L2 orbit’s heliocentric altitude and as such has a lower velocity 

difference.  

To reduce the delta v further, a third mission profile is proposed. This approach would remove 

the need for positioning at the L2 point prior to the comet flyby. This could be achieved if the 

comments intercept could be predicted well ahead of time and a spacecraft could be launched 

with a within a pre-determined intercept timeframe. In this case, the reduced station keeping 

costs at L2 would not be necessary as the spacecraft would not be in a parking orbit prior to 

intercept – instead it could immediately escape earth and head towards the proposed intercept. 

Another possible optimisation could be the use of a bi-elliptic transfer in place of a Hohmann for 

the transfer from L2 to the nodes. When the target orbit to initial orbit radii-ratio is less than 

15.58 but greater than approximately 11.94, the bi-elliptical transfer is more economical if the 

intermediate point is placed at a sufficiently high altitude (Silber, 1959). 
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